Policy Paper on Refurbishment of Distribution Transformer (DT)

International Copper Association India

31 January 2022

Final

Table of Contents

Abbreviations	4
1. Executive Summary	6
2. Background	8
2.1. Context	8
2.2. Purpose Statement	8
3. Refurbishment of DT for Energy Performance and Reliability Improvement in Select DISCOMs	of India
	9
3.1. Preamble	9
3.2. Issues in DT Asset Management	9
3.3. Refurbishment of DT in Select DISCOMs in India	11
3.4. Results of Proof of Concept (PoC)	13
3.5. Commercial Attractiveness of DT Refurbishment	15
3.6. Impact of DT Refurbishment on Distribution Retail Tariff	17
4. Potential for Energy Savings and Emission reduction through Refurbishment of DT in India	19
4.1. Overview of DTs Installed in India	19
4.2. DT failure rate in India	20
4.3. Annual energy savings potential through refurbishment of failed DTs at Pan India Level	20
4.4. Annual Savings Potential through refurbishment of legacy DTs at Pan India level	22
5. Policy Recommendations - Refurbishment of DT for Enhanced Energy Efficiency an	d Asset
Management	24
5.1. Objective	24
5.2. Target DISCOMs	24
5.3. Targeted DT Segment	24
5.4. Target Level for Enhancing DT's Energy Efficiency	25
5.5. Policy Period	25
5.6. Baseline Setting and Implementation Plan by DISCOM	25
5.7. Implementation by DISCOM	26
5.8. Monitoring and Verification (M&V)	26
5.9. Deviation from Target Energy Efficiency Level and Current & Temperature Tolerance	27
5.10. Procurement	27
5.11. Fiscal and Non-Fiscal Support	28
5.12. Consequence for Non-Implementation	28
5.13. Administration of the Policy	28
6. Way Forward	29
6.1. Implementation of Policy	29
6.2. Capacity Building	29
Appendix A	30
A.1. Improved Reliability due to DT Refurbishment	30
A.2. Impact of DT Refurbishment on Average Billing Rate (ABR)	34
A.3. Assumptions for estimation of savings potential due to refurbishment	38
A.4. DT Failure Rate	40

2

A.5. State wise Volume of Failed DTs, by capacity	43
A.6. Annual Energy and Cost Savings through Refurbishment of failed DT's	45
A.7. Annual Capex avoidance due to DT Refurbishment	47
A.8. Annual savings with refurbishment of inefficiently operating legacy DTs	48

List of Tables

Table 1: DISCOMs where Proof of Concept studies were conducted	11
Table 2: Scope for refurbishment based on loss deviation levels	12
Table 3: PoC results – 100 kVA DT (MPPKVVCL)	13
Table 4: PoC results – 200 kVA (MPPKVVCL)	13
Table 5: PoC results – 200 kVA DT (MPPKVVCL)	14
Table 6: PoC results – 100 kVA DT (MSEDCL)	14
Table 7: PoC results – 100 kVA DT (TANGEDCO)	15
Table 8: Summary of PoC Studies	15
Table 9: Assumptions for deviation in technical loss from rated specifications, post refurbishment in DTs	15
Table 10: Cost Benefit Analysis – 100 kVA DT	16
Table 11: Cost Benefit Analysis – 200 kVA DT	16
Table 12: Options with DISCOMS to address failed DTs	16
Table 13: Sensitivity of Payback period to CAGR of ACOS	17
Table 14: Sensitivity of Payback period to average DT Loading	17
Table 15: Deviation in losses, from rated specifications, post conventional repair, as observed in PoC studie	es20
Table 16: Deviation in losses, from rated specifications, post refurbishment, as observed in PoC studies	21
Table 17: Scope for refurbishment based on loss deviation levels	25
Table 18: Illustration for Baseline adjustment	26
Table 19: Illustration for estimation of cost of deviated energy loss	27
Table 20: Refurbished DT Maximum monthly loading (kWh), during the monitoring period (MSEDCL)	30
Table 21: Refurbished DT monthly average kVA loading, during the monitoring period (MSEDCL)	31
Table 22: Refurbished DT average monthly kW loading, during the monitoring period (MSEDCL)	31
Table 23: Assumptions for assessment of Refurbishment of DTs	
Table 24: Cost of DTs as per the ratings	
Table 25: Revenue loss due to Conventional Repair of DTs	
Table 26: Per unit Revenue loss w.r.t saleable Units due to Revenue Loss and Recurring Repair of DTs	
Table 27: Revenue loss due to Conventional Repair of DTs	35
Table 28: Per unit Revenue loss w.r.t saleable Units due to Revenue Loss and Recurring Repair of DTs	35
Table 29: ARR Components – 100 kVA DT	
Table 30: Impact on Interest on Project Loans – 100 kVA DT	36
Table 31: Impact on ROE – 100 kVA DT	
Table 32: Impact on Depreciation – 100 kVA DT	
Table 33: Impact on ABR due to refurbishment – 100 kVA DT.	
Table 34: ARR components – 200 kVA DT	
Table 35: Impact on Interest on Project Loans – 200 kVA DT	
Table 36' Impact on RoE – 200 kVA DT	37
Table 37: Impact on Depreciation – 200 kVA DT	
Table 38: Impact on ABR due to refurbishment – 200 kVA DT.	
Table 39: Assumed split of Installed DTs, by capacity, based on % of MVA capacity installed	38
Table 40: Deviation in technical losses from rated loss levels, in DTs post conventional repair / Legacy DTs	
operating inefficiently	38
Table 41: Deviation in technical losses from rated loss levels, in refurbished DTs	38
Table 42: Assumed prices of new AL star 1 rated DT	
Table 43: DT failure rates, by state	40
Table 44: Assumed DT failure rates, by state	42
Table 45: Volume of failed DTs, state wise, by capacity	
Table 46: Annual Energy & Cost Savings, by state, through refurbishment of failed DTs	45
Table 47: CAPEX avoidance due to DT refurbishment, by state (in INR)	47
Table 48: Annual Savings through refurbishment of inefficiently operating Legacy DTs. by state	48
List of Figures	
• •	
Figure 1: Impact of DT Refurbishment on Retail Tariff	18
Figure 2: Installed capacity, volume-wise, capacity wise, by state	19
Figure 3: Indicative breakup of Installed DTs, by capacity (in %)	19

Figure 5: Indicative failed volume of DTs (in %), by capacity
Figure 6: Indicative technical loss in DTs among conventional repair and refurbishment, at India level
Figure 7: Indicative annual CAPEX savings through refurbishment ¹⁵ , by capacity (in INR crore)
Figure 8: Estimated existing technical losses in Installed DTs ¹⁸ , by capacity (in GWh per annum)
Figure 9: Estimated Technical loss in Installed DTs, if legacy transformers are refurbished & reinstated ¹⁸ , by capacity (in GWh per annum)
capacity (in GWh per annum)
Figure 10: Estimated annual energy savings through Refurbishment, by capacity (in GWh)22 Figure 11: Refurbished DT monthly loading (kWH), during the monitoring period (MSEDCL)
Figure 11: Refurbished DT monthly loading (kWH), during the monitoring period (MSEDCL)
Figure 12: Refurbished DT kVA loading, during monitoring period (MSEDCL)
Figure 13: Refurbished DT kW loading, during monitoring period (MSEDCL)
Figure 14: Loading and technical losses in refurbished DT, during monitoring period (MSEDCL)
Figure 15: Average daily technical loss (INR per day) in refurbished DT, during monitoring period (MSEDCL).32
Figure 16: Temperature profile of refurbished DT, during monitoring period (MSEDCL)

Abbreviations

The list of abbreviations used in the draft report is presented below:

Abbreviation	Description		
٥C	Degree Celsius		
ABR	Average Billing Rate		
ACOS	Average Cost Of Supply		
AI	Aluminum		
ARR	Aggregate Revenue Requirement		
AT&C	Aggregate Technical and Commercial Losses		
BAU	Business as Usual		
BEE	Bureau of Energy Efficiency		
BIS	Bureau of Indian Standards		
CAGR	Compounded Annual Growth Rate		
СарЕх	Capital Expenditure		
CEA	Central Electricity Authority		
CERC	Central Electricity Regulatory Commission		
Cu	Copper		
DISCOM	Distribution Company		
DT	Distribution Transformer		
ERDA	Electrical Research and Development Association		
FLL	Full Load Loss		
FY	Financial Year		
GFA	Gross Fixed Assets		
GWh	Gigawatt hours		
HV	High Voltage		
ICA	International Copper Association		
INR	Indian Rupees		
IPDS	Integrated Power Development Scheme		
IS	Indian Standards		
KPI	Key Performance Indicator		
kVA	kilo Volt-Ampere		
LV	Low Voltage		
M&V	Monitoring and Verification		
MPPKVVCL	Madhya Pradesh Poorv Kshetra Vidyut Vitran Company Limited		
MSEDCL	Maharashtra State Electricity Distribution Company		
MVA	Million Volt-Ampere		
NLL	No Load Loss		
O&M	Operation and Maintenance		
OEM	Original Equipment Manufacturer		
OpEx	Operational Expenditure		
РоС	Proof of Concept		
R&M	Repair and Maintenance		
R-APDRP	Accelerated Power Development and Reforms Programme		
RDSS	Revamped Distribution Sector Scheme		
RoE	Return on Equity		

Abbreviation	Description
SERC	State Electricity Regulatory Commission
TANGEDCO	Tamil Nadu Generation and Distribution Corporation Limited
тсо	Total Cost of Ownership
UDAY	Ujwal DISCOM Assurance Yojana

1. Executive Summary

Distribution Transformer (DT) play a vital role in the power distribution network of the DISCOMs. For overall DISCOM viability, it is imperative that each DT turn into a profit center. It is estimated that out of 21.73% national average AT&C losses in FY 2020, about 5.16% is contributed by Technical losses in DTs, and it can be brought down to 4.20% and below. Under prevailing operational practices of public DISCOMs, the DT's technical losses are not generally measured unless it fails and further, there is no pro-active asset management approach towards DT's repair and O&M practices.

The key operational issues that the DISCOMs experience with respect the DT asset management are

To address the above dual issues (i.e., technical loss deviation and premature failure) in DT asset management, ICA India has carried out pilots on refurbishment of DT in three key utilities (i.e. Madhya Pradesh Poorv Kshetra Vidyut Vitran Company Limited (MPPKVVCL), Maharashtra State Electricity Distribution Company (MSEDCL), Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO)) in India. It is recognized that, Refurbishment of DTs resulted in helping utilities to address the deviation in technical losses from the rated specifications. DT refurbishment fundamentally involves augmentation or replacement of the active materials in a DT i.e., Core and Winding, depending on the condition, and design of the DT.

The pilot studies conducted in the utilities demonstrated that, the energy performance of DT after refurbishment is equivalent to the newly procured Cu DT at about 50% of cost, and its giving extended life to DT equivalent to that of a new transformer.

Among the installed DT capacity, the average annual failure rate of DTs in country is estimated to be about 8.54% (i.e., 0.97 million DTs) and the failure rate varies from 4% to 30% across the states in India. Out of the failed DTs, considering 70% is being repaired through conventional repair, the estimated annual technical loss from DT is about 4,664 GWh which can be brought down to 2,953 GWh (i.e. annal energy savings of 1,712 GWh). Annual energy savings of about 1,712 GWh, at the India level, results in an annual cost saving of about INR 1,059 crore.

In addition to the failed DTs, there are legacy DTs in the distribution network which operate with deviation in losses from the rated specifications. Considering 40% of operational DTs are legacy DTs, the estimated annual energy loss from the legacy DT is about 57,732 GWh.

The 57,732 GWh annual technical loss in DTs is equivalent to 5.16% of the total net input energy at pan India level. This technical loss can be reduced by refurbishing the inefficiently operating legacy DTs in the system. This would result in an annual DT technical loss of about 46,994 GWh. Refurbishment of all the inefficiently operating DTs in the Distribution network would help in realizing an annual energy savings of about 10,738 GWh (57,732 – 46,994), at India level, amounting to an annual savings of INR 6,560 crore. The expected annual energy savings of about 10,738 GWh would result in an annual emission reduction of about 8.5 Mn ton CO2.

Though the annual estimated potential saving of 10,738 GWh is possible through refurbishment, the refurbishment of 100-200 kVA DTs (where failure rates and energy losses are predominantly higher), can be targeted by Bureau of Energy Efficiency (BEE) in initial Phase as these DTs are easy to access, refurbish, and monitor due to their predominant use in urban and semi-urban regions. This selective targeting will help in an estimated annual energy savings of about 3,367 GWh or annal energy cost savings of INR 2,088 crores to the utilities

Keeping these factors into consideration, the key policy recommendations for enhancing the energy efficiency of DTs in DISCOM through improvisation of asset management practices are

1. **Target DISCOMs:** All PAT notified DISCOMs, as under BEE Notification S.O.5045(E) dated 1st October 2018, shall undertake measures to improve the energy efficiency of DTs through refurbishment and improved asset management practices.

- 2. **DTs to Refurbish:** All operational DTs, which are operating at a high level of deviation in technical losses, with name plate ratings ranging between 100 kVA and 200 kVA. However, DISCOM may choose to the improve the energy efficiency performance level of operating DTs with ratings less than 100 kVA.
- 3. Target Performance Level for Enhancing DT's Energy Efficiency:
 - a. DTs which are procured before the date of notification of BEE's S.O. 185(E) i.e., Standards for Star Labelled Distribution Transformer dated 12th January 2009, shall have the total loss (i.e. No Load Loss (NLL) and Full Load Loss (FLL)) equivalent to or better than the prevailing energy consumptions standards for Star 1 Labelled Distribution Transformer with +10% tolerance (i.e. energy consumption standards as under BEE's notification S.O.4062(E) dated 16th Dec, 2016)
 - b. DTs which are Star Labelled but having the total loss deviations on higher side from its specifications shall restore the loss level to its respective star level +10% tolerance. This includes DT's which are both within and outside the warranty period.

4. Deviation from Target Energy Efficiency Level:

- a. In case of deviation in annual loss from target energy efficiency level, the cost of deviated energy loss shall not be passed on to the retail consumers for the entire deviation period (i.e. period starting from completion of DT refurbishment) until the deviation is brought under the limits.
- b. In case the deviations are un-addressable, the DISCOM shall replace the DT with a minimum Star 1 level DT under prevailing energy consumption standards i.e., energy consumption standards as under BEE's notification S.O.4062(E) dated 16th Dec, 2016 and its amendments if any.
- 5. **Fiscal and Non-Fiscal Support:** DISCOM is allowed to utilize the financial support from applicable Central and State Scheme such as Revamped Distribution Sector Scheme to enhance its DT energy efficiency performance under the Policy. Further, BEE may provide capacity building support to DISCOM on enhancing the DT energy efficiency performance.
- 6. **Consequence for Non Implementation of Policy:** In case of non-implementation of the Policy, the SERC may disallow the 100% of the cost of deviated energy loss and 50% of the Repair and Maintenance (R&M) cost of all DT's.

2. Background

2.1. Context

In the value chain of electricity, India's distribution network continues to be the weakest link as most distribution utilities are making losses as result of poor infrastructure, inefficient operation, and expensive long term power purchase agreements, among others. These losses, in turn, avert them from making investments required to enhance the quality of power supply¹. India's distribution system is fronting the issue of high Aggregate Technical & Commercial (AT&C) losses and low supply quality for a long period. Government of India has taken various steps and interventions to reduce the AT&C losses via schemes including R-APDRP, IPDS, UDAY and the recently rolled out Revamped Distribution Sector Scheme (RDSS) among others which support state governments in bringing down the AT&C losses and improving the quality of power.

While these interventions support the state distribution utilities in improving the technical and commercial performance of the Distribution Companies (DISCOMs), one of the indistinct issues that the distribution utilities continue to face is the reasonable failure rate of Distribution Transformers (DTs) and the deviation of technical losses (No Load Loss (NLL) and Full Load Loss (FLL)) from rated specifications. This results in commercial losses, reduction in supply quality and reliability to the consumers.

While the failure rate of DTs is usually tracked by the DISCOMs, the deviation in technical losses in DTs are generally not measured and monitored by the distribution utilities. Further, the total technical loss deviations are as high as about 30% from the rated specifications in DTs which are reinstated into service post conventional repair, and in legacy transformers operating inefficiently.

The key reasons for not focusing on the technical loss deviations in the DTs by utilities are²:

Lack of metering and monitoring mechanism for DT to measure the losses Lack of emphasis on the energy efficiency of DTs after repairs. Absence of policy interventions at state and central level to recognize the technical losses in DTs and to tap the opportunity to bring down the AT&C losses.

Presently, there is no formal practice followed by DISCOMs to ensure that DTs are operating efficiently. Lack of monitoring systems to track the health of operational DTs or DTs which are being reinstated into network post repair, is leading to untimely failure and inefficient operations. This leads to following snags in distribution utilities

- 1. Increased recurring operating costs;
- 2. Increased revenue loss (on account of energy losses); and
- 3. Increased contingent capital expenditure (for replacement of failed DTs)

These problems eventually deter the technical and financial performance of DISCOMs.

2.2. Purpose Statement

The purpose of the policy paper is to explain how the failed DTs, post-repair and legacy transformers are operating inefficiently at higher loss levels in the distribution system and how DT refurbishment with an aim to improve operational performance would help DISCOMs in:

- 1. Reducing technical losses;
- 2. Differ Capital Expenditure (CapEx);
- 3. Lower Repair & Maintenance (R&M) cost;
- 4. Improving the reliability of the distribution network; and
- 5. Reduces the retail tariff of distribution

This paper makes policy recommendations to tap the potential of energy loss reduction of about **10,738 GWh per annum**³ by increasing the energy performance of inefficient legacy and failed DTs through refurbishment.

¹ NITI Aayog, 2021, https://www.niti.gov.in/sites/default/files/2021-08/Electricity-Distribution-Report_030821.pdf

² Based on primary research with select DISCOMs in India

³ Refer to Appendix A.8 for detailed estimates on savings potential

3. Refurbishment of DT for Energy Performance and Reliability Improvement in Select DISCOMs of India

3.1. Preamble

DTs play a vital role in the power distribution network of the DISCOMs. DTs are one of the critical and high value CapEx assets for DISCOMs. For overall DISCOM viability, it is imperative that each DT must turn into a profit center. It is estimated that out of 21.73%⁴ national average AT&C losses in FY 2020, about 5.16%⁵ is contributed by Technical losses in DTs, and it can be brought down to 4.20%³ and below.

Under prevailing operational practices of public DISCOMs, the DT's technical losses are not generally measured unless it fails. Further, there is no pro-active asset management approach towards DT's repair and O&M practices.

Failure rate of DTs is one of the important Key Performance Indicators (KPIs) for DISCOMs. The average failure rate at India level is relatively higher when compared to the global benchmark. In India, on average 8.54%⁶ DTs fail every year and average rate of failure of aluminum wound DTs is more when compared to the copper wound DTs. In general, overloading is cited as one of the root causes of DT failure amongst various other reasons. DTs are frequently overloaded, resulting in deterioration of their operating health and its lifespan.

Any failure of the DT before the expiration of its designed lifespan (i.e., 25 years) results in an unplanned outage, production loss to economy, and in most cases substantial financial losses to both utilities and customers. Overall, it affects the reliability of the network.

Considering the current financial state of public DISCOMs, performance improvement of DTs becomes a decisive factor in protecting DISCOMs from further losses and provides opportunity to minimize overall AT&C losses.

Due to financial constraints for procuring new DTs, most public utilities operate DTs beyond their useful life by inefficiently repairing them several times. This contributes to reduced efficiency of DTs and high technical losses in the distribution system.

Realizing the need to minimize the technical losses and improving the reliability of DTs, an opportunity to be explored by DISCOMs is improving the performance of DTs through refurbishment. The DT refurbishment carried out by International Copper Association (ICA India) at select DISCOMs in India shows that, refurbishment has resulted in an enhanced performance - equivalent to Energy Efficiency Levels specified by both Bureau of Energy Efficiency (BEE) and Bureau of Indian Standards (BIS); extended life of the old DTs (equivalent to new DT); and increased reliability.

3.2. Issues in DT Asset Management

The key operational issues that the DISCOMs experience with respect the DT asset management are

⁴ PFC – Performance review of state utilities (FY 2020)

⁵ Refer to Appendix A.8 for detailed Loss Estimate

⁶ Refer to Appendix A.4 for failure rate details across states

3.2.1. Deviation in Technical Loss

The deviation in technical losses from name plate specifications are majorly due to following causes and reasons:

Non Standard Repair Practices	 Lack of non standard DT repair practice results in inefficienct repair, and operational performance therafter Lack of design capabilities with repairer to achieve optimum flux density.
Lack of focus on Energy Efficiency post Repair of DT	 Absence of pre and post repair technical loss assessment in conventional repair, masking cost of energy inefficiency in the DT repair practices
Lack of DT Metering	Absence of metering in DT results in no focus on energy efficiency
No Energy Performance baseline reference for Legacy DTs	 DTs procured by DISCOM prior to BEE's Standard and Labelling program for Distribution Transformer in 2009, doesn't have standard specifications for techincal losses

Refurbishment of DTs can help utility address the deviation in technical losses from rated specifications. The details on minimization of technical losses through DT refurbishment is discussed in the section 2.4.

3.2.2. Premature failure of New and Repaired DTs

The major causes for premature failure in both new and repaired DTs are:

Overloading

• Lack of non standard DT repair practice results in inefficient repair and inefficient operation therafter

Poor O&M Practices by DISCOM

• Freqent overloading and poor maintenance of DT resulting in failures

Poor procurement & contractual practices

- Procurement without consideration of Total Cost of Ownership (TCO) (i.e. cost of energy loss, Repair & Maintenance Cost); non standard workmanship and material use due to pricing pressure; non clarity on responsibility of event of failures in Supply and Service agreement.
- Very short warranty period offered by the repairer/OEM and its acceptance by DISCOM's i.e. minimal control on performance
- •No mechanism/contractual obligation for measuring the energy performance of DT post repair other than the prevailing acceptance tests

Lack of focus/absence of a system to track Total Cost of Ownership

- •No system in place to track the TCO of DT from purchase to scrap among majority of DISCOMs. Recurring repair cost adds to retail tariff of consumers.
- · Conventional repair is less expensive which is masking the total cost of ownership/operation of legacy DT

Monitoring Mechanism

- No monitoring mechanism is available in majority of DISCOMs to evidently identify the DT failure reasons on account of DT OEM's workmanship, design, and material used (and) on account of DISCOM's O&M
- · Absence of continuous energy performance monitoring of DTs, to ascertain the quality of functioning of DT

The details on minimization of total cost of ownership through DT refurbishment, and its commercial attractiveness are discussed in the section 3.5.

3.2.3. Other Issues and Challenges

In addition to operational challenges (i.e., technical loss deviation and premature failure), there are regulatory and market related challenges which are resulting in an increased CapEx and recurring R&M costs of DTs among DISCOMs.

- Regulatory Challenges: Approval of capex proposals (including DT) without scrutinizing effectiveness of earlier approved DT capex (i.e., whether the asset lasted to its full lifetime), dilutes the prudency in procurement by DISCOM. As a result, new capex addition results in additional fixed cost to consumers which could potentially be avoided through effective procurement.
- 2. **Commercials of Conventional Repair:** Conventional repair is less expensive (without factoring the cost of energy inefficiency) which is masking the total cost of ownership/operation of legacy DT.
- 3. **DISCOMs awareness on Refurbishment:** It is renowned that that the conventional repair is the limited and commonly adopted option that is available with DISCOM. The awareness on refurbishment of DT is in a nascent stage among public utilities in India.
- 4. Prevailing Repair Ecosystem:
 - a. Basis the primary interactions with select DISCOMs in India by ICA India, it is inferred that there is an apprehension from DISCOM about relatively high cost of refurbishment of DT (without weighing the long-term commercial benefits) and its commercial attractiveness (primarily due to lack of awareness).
 - b. In addition, there is an apprehension from DT repairers about the expected changes in legacy repair system/process as the current system of repair is not on the basis of outcome/performance driven.
 - c. Absence of capacity/awareness with repairers/DISCOM to have transition from conventional repair to refurbishment.

3.3. Refurbishment of DT in Select DISCOMs in India

To address the earlier referred dual issues (i.e., technical loss deviation and premature failure) in DT asset management, ICA India has carried out pilots on refurbishment of DT in three key utilities in India. The details of DISCOMs and the size of the DT which are refurbished under the pilots are as below:

Table 1: DISCOMs where Proof of Concept studies were conducted

SI.No	DISCOM	Refurbished DT Size
1	Madhya Pradesh Poorv Kshetra Vidyut Vitran Company Limited (MPPKVVCL), Madhya Pradesh	1x100 kVA and 2x200 kVA
2	Maharashtra State Electricity Distribution Company (MSEDCL), Maharashtra	1x100 kVA
3	Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO), Tamil Nadu	1x100 kVA

3.3.1. Refurbishment of DT

Refurbishment of DT is undertaken to reduce the high technical losses to near manufacturer specification. It can be best proactively undertaken on operational high loss legacy DTs and also on failed DTs. DT Refurbishment fundamentally involves augmentation or replacement of the active materials in a DT i.e., Core and Winding, depending on the condition, and design of the DT.

3.3.2. Process of DT Refurbishment

As the internal losses in a transformer is contributed through distributed magnetic flux, the pilots were focused on correcting the magnetic flux inside the transformer through winding compensation. The process adopted for refurbishment of the DT is as below:

Basis the discussion with various DT manufacturers and DT subject matter experts by ICA India, the selection of DT for refurbishment has been performed on the basis of deviation of NLL & FLL of DT from its ideal loss level or manufacturers specification.

Table 2: Scope for refurbishment based on loss deviation levels

Case	Existing No Load Loss above Ideal Level	Existing Full Load Loss above Ideal Level	Scope for Refurbishment
1	<20%	<20%	No refurbishment work required
2	<20%	>20%	Winding replacement is required
3	>20%	<20%	Core material addition is required (with limited winding augmentation)
4	<20%	Between 20% & 40%	Both winding replacement and core material addition is required
5	Between 20% & 40%	>40%	Both winding replacement and core material addition is required
6	>40%	>40%	DT Replacement is required

For case 1, where the No Load and Full Load losses are both within 20% of ideal loss levels refurbishment can help reduce the technical losses further. However, they are generally not economically viable.

For case 6, where both No Load and Full Load losses exceed 40% than the ideal loss levels, any attempts to bring down these technical losses through refurbishment may not be effective. In such a case, entire DT replacement may be a viable option.

For total losses ranging from 10% to 30% from ideal loss level, the DT refurbishment can help bring down the technical losses near to ideal loss levels or even better, which can be inferred from the results of PoC (refer section 3.4) that has been carried out.

3.4. Results of Proof of Concept (PoC)

During the course of baseline assessment, it is observed that, the NLL deviation in the DT varied from 12% to 82% from the specification and the FLL deviation varied from 3% to 34% from the specification. Despite significant variation, the implementation of DT refurbishment resulted in reduction in the total losses to a level which is even lower than the specification. Details of performance improvement during PoC studies is discussed below.

3.4.1. Madhya Pradesh Poorv Kshetra Vidyut Vitran Company Limited (MPPKVVCL)

Old DTs were randomly chosen and refurbishment was performed using multiple design options to study the impact on losses in the DTs.

3.4.1.1. Design option 1: Improvement for best performance

In this design, both High Voltage (HV) and Low Voltage (LV) windings are replaced with electrolytic grade copper windings, with an aim to optimize full load losses and improve efficiency while achieving enhanced capacity. The design option was tested on two DTs (1x100 kVA, 1x200 kVA). The results are tabulated below:

Key Design Parameters	Unit	Specification	Baseline (As-Is)	% Deviation from Specification	Post repair results (measured at ERDA)	% Change from Baseline
Capacity	kVA	100	86.46		109*	+20%
Year of Manufacturing	Year	-	2013		-	
Flux Density	Tesla	1.55	-		-	
LV Winding Material		-	DPC AI		DPC Cu	
No of LV Turns	Nos	-	76		76	0%
HV Winding Material		-	DPC AI		DPC Cu	
No of HV Turn	Nos	-	3,344		3,344	0%
No Load Loss	Watt	260	258	-0.7%	295	+15%**
Full Load Loss	Watt	1,760	2,358	+34%	1,168	-50%
Total Loss	Watt	2,020	2,616	+29.50%	1,463	-44%

Table 3: PoC results - 100 kVA DT (MPPKVVCL)

*KVA enhancement is inferred and estimated from ERDA results

** The allowed tolerance for loss level as per TS-1116 for repaired transformer are: No-load loss is 15%; Full load loss is 15%; Total loss is 10%. No Load loss could have been reduced by increasing no. of turns with trade-off of slight higher (still reduced) Full Load loss. Total Loss optimization was done.

The standard loss for BEE's Star 1 rated 100 kVA DT at 100% loading is 1,650 Watt whereas the total loss achieved through refurbishment of DT is 1,463 Watt at 100% loading.

Table 4: PoC results - 200 kVA (MPPKVVCL)

Key Design Parameters	Unit	Specification	Baseline (As-Is)	% Deviation from Specification	Post repair results (measured at ERDA)	% Change from Baseline
Capacity	kVA	200	200		200	0%
Year of Manufacturing	Year	-	2004		-	
Flux Density	Tesla	1.55	-		-	
LV Winding Material		-	DPC AI		DPC Cu	
No of LV Turns	Nos	-	42		42	0%
HV Winding Material		-	DPC AI		DPC Cu	
No of HV Turn	Nos	-	1848		1848	0%
No Load Loss	Watt	500	561	+12.20%	567.79	+13**
Full Load Loss	Watt	3,000	3,000	-	1,729.69	-42.34%
Total Loss	Watt	3,500	3,561		2297.48	-35.48%

**The allowed tolerance for loss levels as per TS-1116 for repaired transformer are: No-load loss is 15%; Full load loss is 15%; Total loss is 10%

The standard loss for BEE's Star 1 rated 200 kVA DT at 100% loading is 2,300 Watt whereas the total loss achieved through refurbishment of DT is 2,297 Watt at 100% loading.

3.4.1.2. Design option 2: Improvement for cost-effective capacity enhancement

In this design, HV winding is made of electrolytic grade copper & LV winding is made of aluminum, with an aim to optimize initial cost and focus on reduction of full load losses. The design option was tested on a 200 kVA DT. The results are tabulated below:

Key Design Parameters	Unit	Specification	Baseline (As- Is)	% Deviation from Specification	Post repair results (measured at ERDA)	% Change from Baseline
Capacity	kVA	200	200		200	0%
Year of	Year	-	2004		-	
Manufacturing						
Flux Density	Tesla	1.55	-		-	
LV Winding		-	DPC AI		DPC AI	
Material						
No of LV Turns	Nos	-	42		42	0%
HV Winding		-	DPC AI		DPC Cu	
Material						
No of HV Turn	Nos	-	1848		1848	0%
Total Loss	Watt	3,500	3,850	+10%	3,029	-21.32%

Table 5: PoC results - 200 kVA DT (MPPKVVCL)

3.4.2. Maharashtra State Electricity Distribution Company (MSEDCL)

Old DT was randomly chosen, and refurbishment was done by the way of changing both HV and LV windings to electrolytic copper and increasing the number of turns by 15% in both HV & LV winding, to study the impact on losses in the transformer. The performance has been studied for a period of 2 years post repair through Transformer Monitoring Unit (TMU) connected through energy meter. The results are tabulated as below:

Table 6: PoC results - 100 kVA DT (MSEDCL)

Key Design Parameters	Unit	Specification	Baseline (As-Is)	% Deviation from Specification	Post repair results	% Change from Baseline
Capacity	kVA	100	100		109*	+9%
Year of Manufacturing	Year	-	2004			
Flux Density	Tesla	1.55	1.55	1.55	1.35	-13%
LV Winding Material			DPC AI		DPC Copper	
No of LV Turns	Nos		75		86	+15%
HV Winding Material			DPC AI		DPC Copper	
No of HV Turn	Nos		3,300		3,784	+15%
No Load Loss	Watt	260	426	+65%	295	-30.75%
Full Load Loss	Watt	1,760	1,815	+3%	1,654	-8.87%
Total Loss	Watt	2,020	2,241	+10.94%	1,949	-13%

*KVA enhancement is inferred and estimated from ERDA results

In addition, improvement in reliability of DT due to refurbishment is discussed in Appendix A.1.

3.4.3. Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO)

Old DTs were randomly chosen, and refurbishment was performed by the way of changing HV winding to electrolytic copper, to study the impact on losses in DT. The results as observed pre and post repair are tabulated as below:

Table 7: PoC results – 100 kVA DT (TANGEDCO)

Key Design Parameters	Unit	Specification	Baseline (As-Is)	% Deviation from Specification	Post repair results (measured at NABL)	% Change from Baseline
Capacity	kVA	100	100		108	
Year of Manufacturing	Year	-	2010	-	-	
Flux Density	Tesla	1.55	-	-	-	
LV Winding Material		-	DPC AI	-	DPC AI	
HV Winding Material		-	DPC AI	-	DPC Cu	
No Load Loss	Watt	260	474	+82%	472	0.42%
Full Load Loss	Watt	1760	2067	+17.44%	1559	-25%
Total Loss	Watt	2020	2541	+25.79%	2031	-20%

3.4.4. Summary of PoC Studies

Table 8: Summary of PoC Studies

Decian		DT	Deviation in technical loss from rated specifications (in %)					
Option	DISCOM	Rating	Pre-Repair	Pre-Repair Readings		Post-Refurbishment Reading		
Option		(kVA)	NLL	FLL	Total Loss	NLL	FLL	Total Loss
	TANGEDCO	100	+82%	+17.44%	+25.79%	+81.53%	-11.42%	+0.54%
1	MPPKVVCL	200	-	-	+10%	-	-	-13.46%
		Average	+82%	+17.44%	+17.89%	+81.53%	-11.42%	-6.46%
	MSEDCL	100	+65%	+3%	+10.94%	+13.46%	-6%	-3.51%
2	MPPKVVCL	100	-0.7%	+34%	+29.51%	+13.66%	-33.6%	-27.57%
		Average	+32.15%	+18.5%	+20.22%	+13.56%	-19.8%	-15.54%

From the above table, basis the refurbishment of 100 kVA DT⁷ at MPPKVVCL, the following deviations in technical losses were considered for analysis of savings potential at India level:

Table 9: Assumptions for deviation in technical loss from rated specifications, post refurbishment in DTs

	Deviation in technical loss from rated specifications (in %)				
LUSS	Pre-Repair	Post-Repair			
No Load Loss ⁸	+15%	+10%			
Full Load Loss	+30%	-30%			

3.5. Commercial Attractiveness of DT Refurbishment

PoC has demonstrated that, the energy performance of DT after refurbishment is equivalent to the newly procured Cu DT at about 50% of cost, and its giving extended life to DT equivalent to that of a new transformer. Further, the simple payback period for refurbishment investment ranges between 3.18 years and 6.26 years with an average simple payback period of 4.3 years (at 70% loading of DT). It's noted that, the simple payback period will further reduce to 1.5 years to 2.21 years at a 100% loading. Details on cost benefit analysis of PoC studies are deliberated below.

⁷ PoC results of MPPKVVCL is considered as both LV & HV windings are refurbished without change in the number of turns in the coils, whereas at MSEDCL PoC number of windings has been changed

⁸ Based on ICA India's primary interaction with select DISCOMs (MPPKVVCL, TANGEDCO, MSEDCL). Though NLL deviation as high as 82% was observed, conservatively it was assumed that deviation in NLL pre-repair is only +15% for analysis

3.5.1. Cost Benefit Analysis

Refurbishment of 100 kVA DT across DISCOMs has resulted in an average annual energy savings of about 3,000 kWh with a refurbishment cost ranging from about INR 68,000 to INR 98,000, resulting in an attractive payback period of about 3 years.

Table 10: Cost Benefit Analysis - 100 kVA DT

S.No	Parameter	Unit	MPPKVVCL	MSEDCL	TANGEDCO
1	Total Units Saved	kWh/year	4,779	1,838	2,198
2	Average Cost of Supply (ACOS)*	INR/kWh	6.25	6.03	5.85
3	Total Money Saved	INR/Year	29,871	11,083	12,858
4	Total Cost of Refurbishment	INR	98,131	-	68,930
5	Total Cost of Conventional Repair	INR	11,342	-	22,946
6	Incremental Cost (4-5)	INR	86,789	-	45,983
7	Simple Payback period including financing charges	Years	3.18	6.26	3.20

* Based on year the PoC study has been conducted. For MPPKVVCL, MSEDCL, TANGEDCO it is 2019, 2016 and 2019 respectively

Similarly, refurbishment of 200 kVA DT has resulted in an annual energy savings of about 4,800 kWh with a refurbishment cost of about INR 1,51,502 resulting in an attractive payback period of about 4.5 years.

Table 11: Cost Benefit Analysis - 200 kVA DT

S.No	Parameter	Unit	MPPKVVCL
1	Total Units Saved	kWh/year	4,858
2	ACOS	INR/kWh	6.25
3	Total Money Saved	INR/Year	30,368
4	Total Cost of Refurbishment	INR	1,51,502
5	Total Cost of Conventional Repair	INR	19,973
6	Incremental Cost (4-5)	INR	1,31,529
7	Simple Payback period including financing charges	Years	4.56

In Business as Usual (BAU), DISCOMs are incurring recurring cost of DT repairs along with a hidden cost of energy loss which are generally not measured and managed. As an alternate investment option, DISCOM may secure a new DT to address the issues of energy loss and recurring repair cost, however, it costs DISCOM almost 2x as compared to the cost of refurbishment without compromising on the energy efficiency performance.

Table 12: Options with DISCOMS to address failed DTs

S.No	Scenario	100 kVA		200 kVA		Remark
1	Business as Usual (INR) (Operational Expenditure (OpEx))					Performance of Refurbished old legacy DT is
	Conventional Repair Cost	11,000		19,000		equivalent to the
	Yearly Energy Loss Cost	29,000		30,000		new Cu DT, with
2	Replacement (INR) (Capex)	Al	Cu	Al	Cu	an enhanced
	1 star	96,000	1,45,000	1,65,000	2,40,000	efficiency and
	3 star	1,30,000	1,90,000	2,10,000	2,80,000	value

S.No	Scenario	100 kVA	200 kVA	Remark
3	Refurbishment (INR)	98,131	1,50,000	

As seen above, the incremental costs of refurbishment are reasonably less when compared to procuring a new DT, while the performance is equivalent to that of a BEE rated new DT. Also, though the refurbishment of DT is expensive option compared to conventional repair, the benefits realized from increased savings through lower energy losses will compensate for the incremental costs.

3.5.2. Sensitivity on DT Refurbishment Investment

The ACOS has been in increasing trend⁹ among most DISCOMs in India on account of raising Average Power Purchase Cost and AT&C losses. DT loss is one of the key contributors to DISCOM's overall AT&C losses (refer section 4.4), however, the losses vary with respect to the loading condition of the DT.

It is to highlight that, the simple payback period on DT refurbishment investment improves radically with an increase in ACOS and loading condition of the DT, as shown below.

Table 13: Sensitivity of Payback period to CAGR of ACOS

CAGR of ACOS	DT Capacity	0%	5%	10%	DISCOM
		3.55	3.34	3.18	MPPKVVCL
Payback Period	100 kVA	3.58	3.37	3.20	TANGEDCO
(Years)		8.41	7.13	6.26	MSEDCL
	200 kVA	5.60	4.95	4.56	MPPKVVCL

Table 14: Sensitivity of Payback period to average DT Loading

Average DT Load	DT Capacity	70%	80%	90%	100%	DISCOM	
		3.18	2.39	1.84	1.50	MPPKVVCL	
Payback Period	100 kVA	3.20	2.53	2.06	1.72	TANGEDCO	
(Years)		6.26	5.64	5.18	-	MSEDCL	
	200 kVA	4.56	3.47	2.70	2.21	MPPKVVCL	

3.6. Impact of DT Refurbishment on Distribution Retail Tariff

3.6.1. Treatment of conventional cost of Repair in R&M Expenses

The conventional repair cost incurred for failure of DTs is generally covered under the R&M Expense of Distribution utilities. The expenses incurred for R&M activity carried for the Distribution network by the Distribution Utilities are booked as R&M expenses in the financial statement. However, the State Electricity Regulatory Commissions approves the "R&M expenses" for Distribution utilities on Normative Basis i.e., in percentage of approved Gross Fixed Assets (GFA). In case where R&M expenses are higher than the normative case, the DISCOM has to absorb the loss. Hence, DISCOMs are constrained to limit the R&M cost of DT, however, there is no robust system that presently captures the R&M cost at individual DT level across its operations.

3.6.2. Treatment of DT Refurbishment cost as Capex

The refurbishment of failed DTs with additional cost may be assumed as Capital Expenditure (Capex) during the expenditure year. The refurbishment of failed DTs will result in avoidance of requirement for additional capex for procurement of new DTs. As seen earlier, the refurbishment of DTs can be done at about 50% of actual cost of new DTs, which will result in avoidance of additional Capex to the state utilities.

As the Refurbished DTs can be put to use in the same year, the capitalization of asset can be considered and treated as Capex by the DISCOM. The capitalization due to refurbishment during the year will have an impact on

⁹ https://www.statista.com/statistics/808201/india-cost-of-state-electricity-supply/

ARR components such as capitalization, additional debt, additional equity, interest on project loans, Return on Equity and Depreciation.

3.6.3. Impact of DT Refurbishment on Distribution Average Billing Rate

The refurbishment of DT helps utility in saving the cost towards energy inefficiency, recurring R&M cost of legacy DT's and the new capex. Basis the performance of PoC, it noted that DT refurbishment helps to reduce the Average Billing Rate (ABR) by INR. 0.06 per kWh to INR. 0.09 per kWh¹⁰, at 70% loading of the DT.

Figure 1: Impact of DT Refurbishment on Retail Tariff

Avoided revenue loss from energy inefficiency Avoided recurring R&M cost Avoided New Capex

The above impact is the result of energy sale volume made through a single 100/200 kVA DT on an annual basis.

 $^{^{\}rm 10}$ Refer to Appendix A.2 for the detailed impact of refurbishment on Retail Tariff

4. Potential for Energy Savings and **Emission reduction through Refurbishment of DT in India**

4.1. Overview of DTs Installed in India

The volume of DTs installed in the distribution network of India as on 31st March 2019 is over 11.4 million with an aggregate capacity of 5.89 lakh MVA¹¹. Majority of these DTs (volume wise (90.5%) and capacity wise (83.6%)) are concentrated in about twelve¹² Indian states which are predominantly industrial and agricultural-based economy. The details of state wise installed capacity of DTs and its volume are shown below:

Figure 2: Installed capacity, volume-wise, capacity wise, by state

Among the top twelve states, the Proof of Concept for DT Refurbishment has been implemented in Maharashtra, Madhya Pradesh & Tamil Nadu covering about 25% of these top states. It is expected that, the majority volume of 11.4 million population DT would be distributed among 100 kVA and 200 kVA capacity. On the basis of data collected during PoC studies at MPPKVVCL by ICA India and the public domain information on DT capacity distribution in a DISCOM at Karnataka (representing both the agriculture and industrial economy-based state), the split of installed DTs capacity at India level has been assumed as below:

Figure 3: Indicative¹³ breakup of Installed DTs, by capacity (in %)

- 100 kVA to more than 200 kVA are predominantly used DTs, by capacity, in the distribution network
- < 100 KVA DTs are majorly used in rural feeders which are higher in volume and lacks the metering facility
- Similarly, 100 kVA to greater than 200 kVA DTs are predominantly installed in urban and semi-urban feeders where DTs are accessible and can be monitored

¹¹ All India Statistics report, 2020 - CEA

¹² Maharashtra, Gujarat, Karnataka, Rajasthan, Uttar Pradesh, Tamil Nadu, Madhya Pradesh, Punjab, Andhra Pradesh, Telangana, Haryana and West Bengal ¹³ Refer to Annexure A.3 (Assumption 3) for the methodology of determining the split of DTs

4.2. DT failure rate in India

Among the installed DT capacity, the average annual failure rate of DTs in country is estimated to be about 8.54%¹⁴ (i.e., 0.97 million DTs) and the failure rate varies from 4% to 30%¹⁴ across the states in India, as detailed below:

Figure 4: Failure Rate of DTs⁵, by state (in %)

Higher DT failure rate results in higher R&M costs, lower reliability, loss of revenue to DISCOM and increase in tariff to the end consumers. It is expected that, about 50% of total failures are majorly in 25 kVA DTs which are majorly serving the rural feeders, where the loads are poorly metered and managed. The next notable failed volume is commonly observed in 100 kVA DTs which are prominent in urban and semi urban areas and most of these DTs are expected to be metered.

An indicative split of failed DTs in India (adjusted on the basis of capacity) has been shown below:

Figure 5: Indicative failed volume of DTs (in %)¹⁵, by capacity

• About 7,80,603 DTs of various capacities fail every year resulting in loss of revenue, higher R&M costs and lower reliability to the distribution network

• As observed in the PoC studies, refurbishment can improve the reliability and lower the failure rates in DISCOM

4.3. Annual energy savings potential through refurbishment of failed DTs at Pan India Level

Out of the failed DTs (i.e. 7,80,603 no's), considering 70%¹⁶ (i.e. 5,46,532 no's) is being repaired through conventional repair and remaining 30% DT's (i.e. 234,181 no's) are beyond repair, and needs premature replacement. The deviation in technical loss in these repaired DTs, as observed in PoC studies, are as shown below:

Table 15: Deviation in losses, from rated specifications, post conventional repair, as observed in PoC studies

Loss	Deviation
No-load loss	+15%
Full load loss	+30%

¹⁴ Refer Appendix A.4 for the methodology of arriving at the national average DT failure rate

¹⁵ Refer Appendix A.5 for the methodology of arriving at the split of failed DTs

¹⁶ https://www.cstep.in/drupal/sites/default/files/2019-01/CSTEP_RR_Strategic_Roadmap_for_Implementation_of_UDAY_Scheme_Dec_2017.pdf

Table 16: Deviation in losses, from rated specifications, post refurbishment, as observed in PoC studies

Loss	Deviation
No-load loss	+10%
Full load loss	-30%

Therefore, refurbishment of failed DTs would unlock an annual energy saving potential of about 1,712 GWh as shown below.

Figure 6: Indicative technical loss in DTs¹⁷ among conventional repair and refurbishment, at India level

Annual energy savings of about 1,712 GWh, at the India level, results in an annual cost saving of about INR 1,059 crore^{18.}

In addition, considering the potential of refurbishment in restraining the technical losses in DTs within the specified limits as per IS 1180, some of the earlier unrepairable DTs through conventional repair can be successfully reinstated into the distribution system, thereby resulting in CAPEX savings to the DISCOMs. Conservatively, considering only 20% of the earlier unrepairable DTs (i.e., 20% of 234,181 no's), through conventional repairs, can be brought into service, the annual CAPEX savings for DISCOMS would be about INR 407 crore¹⁹, the split of which is shown below:

Figure 7: Indicative annual CAPEX savings through refurbishment¹⁵, by capacity (in INR crore)

¹⁷ Refer Appendix A.6 for the methodology of calculating savings from the refurbishment of failed DTs

¹⁸ at ACOS of INR 6.2 per kWh

¹⁹ Refer Appendix A.7 for detailed estimates on savings of CAPEX

4.4. Annual Savings Potential through refurbishment of legacy DTs at Pan India level

In addition to the failed DTs, there are legacy DTs in the distribution network which operate with deviation in losses from rated specifications as seen in the PoC studies. If these inefficiently operating DTs in the Distribution network of India are to be refurbished and reinstated into the network, the potential benefits from refurbishment, would be significant. To elucidate, at India level, the average AT&C loss is 21.73%²⁰ (as on 31 March 2020), out of which, basis the deviations observed in PoC studies, the contribution from DT technical loss is estimated to be 5.16%²¹ which is significant. If the inefficiently operating legacy DTs are to be refurbished, the DT technical loss would reduce to 4.20%²¹ leading to about 1% reduction in overall AT&C loss.

Considering that 60% of operational DTs would be relatively new and operating at least at Energy Efficiency level 1 (as specified in IS 1180), and the remaining 40% would be legacy DTs operating at deviation levels as observed in PoC studies, the estimated annual energy loss from the legacy DT is about 57,732 GWh²¹.

The 57,732 GWh annual technical loss in DTs is equivalent to 5.16% of the total net input energy at pan India level. This technical loss can be reduced by refurbishing the inefficiently operating legacy DTs in the system. This would result in an annual DT technical loss of about 46,994 GWh.

Figure 9: Estimated Technical loss in Installed DTs, if legacy transformers are refurbished & reinstated¹⁸, by capacity (in GWh per annum)

Refurbishment of all the inefficiently operating DTs in the Distribution network would help in realizing an annual energy savings of about 10,738 GWh (57,732 – 46,994), at India level, amounting to an annual savings of INR 6,560 crore²². The expected annual energy savings of about 10,738 GWh would result in an annual emission reduction of about 8.5 Mn ton CO_2^{23}

²⁰ PFC – Performance review of state utilities (FY 2020)

²¹ Refer to Appendix A.8 for methodology on the calculation of potential savings from the refurbishment of legacy DTs

²² at ACOS of INR 6.2 per kWh

²³ At an emission ratio of 0.79 tCO2/MWh

Though the annual estimated potential saving of 10,738 GWh is possible through refurbishment, the refurbishment of 100-200 kVA DTs where failure rates and energy losses are predominantly higher, can be targeted in Phase 1 as these DTs are easy to access, refurbish, and monitor due to their use predominantly in urban and semi-urban regions. This selective targeting will help in an estimated annual energy savings of about 3,367 GWh or annal energy cost savings of INR 2,088 crores to the utilities.

Similarly, though refurbishment of 25 kVA segment has shown an estimated savings potential of 3,109 GWh, its higher volume, lack of access, and monitoring may increase the complexity in implementing refurbishment in Phase 1. Hence, this segment of DT may be pursued as a part of Phase 2 implementation.

Also, DTs rated > 200 kVA are subjected to constant loading and have lower chances of failure, and refurbishment may not have a significant effect on improving reliability. However, refurbishment of this segment could potentially help in the reduction of DT technical loss by 2,349 GWh. Hence, this segment of DTs can be pursued along with other segments in later phases.

Also, within these segments, at India level, Standards and Labelling Program by BEE was notified in 2009. DTs procured by DISCOMs prior to these standards are still operational in the Distribution network and are non-labelled. These non-labelled legacy DTs operate at loss levels higher than the current BEE standards for losses. These non-labelled Legacy DTs may be the first priority of DT population that need refurbishment in order to realize larger energy and cost savings.

Further, DTs procured between 2009 & 2016 (i.e., before BEE's new specifications, came into effect after 31st December 2016) might have undergone conventional repair over the years and may be operating at loss levels higher than the label specifications. These DTs can be the second priority area for refurbishment.

Apart from the above, those DTs which are procured post 2016 (i.e., relatively newer DTs) but operating at higher loss levels can be refurbished subsequently. Keeping these factors into consideration, the policy recommendations for implementing the DT refurbishment is discussed in the section 5.

5. Policy Recommendations – Refurbishment of DT for Enhanced Energy Efficiency and Asset Management

Considering an estimated annual energy saving potential of 3,367 GWh from 100 to 200 kVA segments of DTs, which are deployed majorly in urban and semi-urban areas across states in India, refurbishment of DTs (i.e., improved DT asset management) offers an opportunity to DISCOM to reduce and manage its technical loss and improve the reliability of the distribution network.

The proposed policy recommendations for enhancing the energy efficiency of DTs in DISCOM through improvisation of asset management practices are as below:

5.1. Objective

The objectives of the Policy are

5.2. Target DISCOMs

5.2.1. Mandatory

All PAT notified DISCOMs, as under BEE Notification S.O.5045(E) dated 1st October, 2018²⁴, shall undertake measures to improve the energy efficiency of DTs through refurbishment and improved asset management practices.

5.2.2. Voluntary

Beyond the above points, DISCOMs which are keen to enhance the energy efficiency level of its DT fleet shall undertake refurbishment of DTs as per the Policy.

5.3. Targeted DT Segment

DISCOM shall enhance the energy efficiency performance level of all operational DTs, which are operating at a high level of deviation in technical losses, with name plate ratings ranging between 100 kVA and 200 kVA. However, DISCOM may choose to the improve the energy efficiency performance level of operating DTs with ratings less than 100 kVA, subject to fulfillment of provisions of this Policy.

²⁴ https://beeindia.gov.in/sites/default/files/Gazatte%20Notification%20-%20Revision%20in%20targets%20-%20PAT%20DISCOM.pdf

5.4. Target Level for Enhancing DT's Energy Efficiency

DISCOM shall improve the energy efficiency performance level of its DTs as below from its baseline energy efficiency level.

5.4.1. Non-Star Labelled DTs

DTs which are procured before the date of notification of BEE's S.O. 185(E) i.e., Standards for Star Labelled Distribution Transformer dated 12th January 2009, shall have the total loss (i.e. No Load Loss (NLL) and Full Load Loss (FLL)) equivalent to or better than the prevailing energy consumptions standards for Star 1 Labelled Distribution Transformer with +10% tolerance (i.e. energy consumption standards as under BEE's notification S.O.4062(E) dated 16th Dec, 2016²⁵).

5.4.2. Star Labelled DTs

DTs which are Star Labelled but having the total loss deviations on higher side from its specifications shall restore the loss level to its respective star level +10% tolerance. This includes DT's which are both within and outside the warranty period.

5.5. Policy Period

DISCOM shall enhance the energy efficiency level of its legacy DTs as per the target level within below stipulated timelines.

SI.No	Period of DT Purchase	Timeline for Enhancing DT's Energy Efficiency Level
1	Before 1 st Jan 2009	Within 3 years from the date of Notification of the Policy
2	Between 1 st Jan 2009 and 31 st Dec 2015	Within 5 years from the date of Notification of the Policy
3	After 1 st Jan 2016	After 7 years of service or within 1 year from the date of identification of deviation in losses based on periodic monitoring of DISCOM.

5.6. Baseline Setting and Implementation Plan by DISCOM

- a. DISCOM shall identify the volume of targeted DTs to be refurbished and it shall submit the details of targeted DTs to State Designated Agency (SDA) within 6 (six) months from the date of notification of the Policy.
- b. DISCOM shall complete the baseline assessment /audit of existing total loss (No-Load Loss and Full Load Loss) of targeted DTs within 1.5 years from the date of notification of the policy.
- c. DISCOM shall select the targeted DTs for enhancing its energy efficiency level based on its technical loss deviation from the specifications (in case of Star Labelled DT) or prevailing BEE's energy consumptions standards for Star 1 Labelled Distribution Transformer (in case of Non-Star Labelled DT).

Table 17: Scope for refurbishment based on loss deviation levels

SI.No	Existing Total Loss Deviation	Remark
1	<10%	No intervention required
2	10% to 40%	Energy Efficiency of DT to be improved, focusing on refurbishment.
5	>40%	DISCOM shall replace the DT

- d. The baseline energy efficiency level of targeted DTs shall be submitted to BEE within 4 (four) months from the date of baseline measurements along with necessary documents such as reports, certificates etc., duly signed by empowered designated authority (i.e. Chairman & Managing Director/ Managing Director) of the DISCOM.
- e. DISCOM shall also submit the implementation plan for enhancing the energy efficiency level of targeted DTs to BEE within 2 months from the date of baseline measurements.
- f. Before the commencement of implementation activity by DISCOM, BEE may conduct random verification of baseline measurements on sampling basis furnished by DISCOM through Accredited Energy Auditor

²⁵ https://beeindia.gov.in/sites/default/files/DTnoti.pdf Pg 19/47

Firms/Companies. During baseline verification, if the baseline total loss of DT is found to be less than verified/actual total loss (beyond the tolerance variation of [5]%), the baseline loss of all targeted DT's in the sample lot as identified by DISCOM shall be adjusted (i.e. increased) to the level of deviation (beyond [5]% tolerance) as found during random verification.

Table 18: Illustration for Baseline adjustment

DT	Baseline Measurement by DISCOM	Measurement during Random Verification by BEE	Variation	Allowable Tolerance (%)	Remark
1	Total Loss:1780 W	Total Loss: 1850 W	+3.9%	[5%]	Within the tolerance limit. Baseline value is acceptable.
2	Total Loss:1800 W	Total Loss: 1840 W	+2.22%	[5%]	Within the tolerance limit. Baseline value is acceptable.
nth	Total Loss:1750 W	Total Loss: 1860 W	+6.29%	[5%]	Not within tolerance limit. Baseline value of all targeted DT's to be increased by 1.29% (i.e. 6.29% - 5%)

- g. Random verification of baseline measurements shall be carried out jointly with DISCOM official(s) with grade not less than Assistant Executive Engineer (AEE) to evade any ambiguity in the measurements.
- h. Measurement of Total Loss shall be carried out as per [IS 2026 / IS 1180] and its subsequent amendments.

5.7. Implementation by DISCOM

- a. DISCOM shall enhance the energy efficiency level of its DTs to the target level as per the timelines of the Policy and it may carry out the implementation in phases.
- b. DISCOM may enhance its energy efficiency level by its own facilities (major repair center) or through outsourcing to its registered repair vendors.
- c. On completion of enhancement of energy efficiency level of targeted DT's, DISCOM shall furnish the supporting documents demonstrating the achievement of targeted energy efficiency level.
- d. DISCOM may account the resultant energy savings under the PAT scheme.

5.8. Monitoring and Verification (M&V)

- a. DISCOM shall install the smart meter having AMR facility or covered under AMI, while enhancing the energy efficiency level of the DTs as per Ministry of Power notification F.No.23/35/2019-R&R dated 17 Aug 2021²⁶ and as per Central Electricity Authority (Installation and Operation of Meters) Regulations, 2019 and its amendments.
- b. DT metered data on power, energy, loading, etc., may preferably be made available on real time basis through platforms (such as website, mobile app etc.).
- c. Post implementation of DT refurbishment and enhanced asset management practice by DISCOM, the monitoring period for the enhanced energy efficiency of DT shall be for minimum [3] (three) years with a quarterly reporting to [BEE].
- d. DISCOM shall maintain the record on annual loss level of refurbished or enhanced energy efficient DT with respect to its annual average loading.

26

 $https://powermin.gov.in/sites/default/files/webform/notices/Notification_regarding_timelines_for_the_replacement_of_existing_meteRS_with_smart_meteRS_0_0.pdf$

- e. At the end of 1st year, an independent verification by the accredited energy auditor appointed by [BEE] shall be carried out to verify the annual loss level of the DT with respect to its annual average loading, basis the untampered recorded meter data.
- f. In case of deviation in annual load loss level (on higher side) from the target level,
 - i. **For Non-Star Labelled DT:** DISCOM shall restore the loss level of DTs to its target energy efficiency level either under refurbishment warranty or at its own cost.
 - ii. **For Star Labelled DT within warranty period:** Either DISCOM or Original Equipment Manufacturer (OEM) shall restore the loss level of DTs to its respective star level +10% tolerance at its own cost.
 - iii. **For Star Labelled DT outside warranty period:** DISCOM shall restore the loss level of DTs to its respective star level +10% tolerance at its own cost.
- g. To improve the reliability of DT, the current and temperature measurements of DT on random basis shall not exceed the limit for DT loading beyond the name plate rating as under IS2026:2009 and its amendments if any.
- h. DISCOM shall perform continuous condition monitoring of DT, and in case of loading violation more than [10] times in a month (i.e., violation in current and temperature readings), then, any subsequent event of DT failure shall be considered as accountability of DISCOM and its negligence to mitigate such overloading event.

5.9. Deviation from Target Energy Efficiency Level and Current & Temperature Tolerance

a. In case of deviation in annual loss from target energy efficiency level, the cost of deviated energy loss shall not be passed on to the retail consumers for the entire deviation period (i.e. period starting from completion of DT refurbishment) until the deviation is brought under the limits. SERC shall safeguard that such costs are not passed on to the retail consumers.

Table 19: Illustration for estimation of cost of deviated energy loss

Annual Loss Level at Annual Average Loading (A)	Target Energy Efficiency Level (adjusted to annual average loading) (B)	Deviation (C = A-B)	Annual Energy Loss, kWh (D)	Cost of Deviated Energy Loss, INR (E = D x ACOS)				
1,650 W (Total Loss)	1,000 W (Total Loss)	650 W	650W x 8,000 HRS. of operation/1000 = 5,200 kWh	INR 31,200 (5,200 kWh x INR 6 per kWh)				
INR 31,200 shall not be allowed to pass on to the consumers								

- b. In case the deviations are un-addressable, the DISCOM shall replace the DT with a minimum Star 1 level DT under prevailing energy consumption standards i.e., energy consumption standards as under BEE's notification S.O.4062(E) dated 16th Dec, 2016 and its amendments if any.
- c. In case of failure of DT with violations on loading i.e., current and temperature, the cost of such failure (including Repair & Maintenance Cost or Replacement Cost) shall not be allowed to pass on to the retail consumer. SERC shall safeguard that such costs are not passed on to the retail consumers.

5.10. Procurement

- a. DISCOMs may have minimum warranty period of [3] (three) years with OEM's and/or Repairers, in case of procurement of new DT or repairer services.
- b. In case of repairing or refurbishment, the loss level of DT during post repair test shall be within the target energy efficiency level.

5.11. Fiscal and Non-Fiscal Support

- a. DISCOM is allowed to utilize the financial support from applicable Central and State Scheme such as Revamped Distribution Sector Scheme to enhance its DT energy efficiency performance under the Policy.
- b. BEE may provide capacity building support to DISCOM on enhancing the DT energy efficiency performance.

5.12. Consequence for Non-Implementation

- a. In case of non-implementation of the Policy, the SERC may disallow the [100%] of the cost of deviated energy loss and [50%] of the Repair and Maintenance (R&M) cost of all DT's.
- b. Where no baseline activity is carried out by the DISCOM, SERC may arrive the cost of deviated energy loss with its assumptions to disallow such costs.

5.13. Administration of the Policy

5.13.1. Nodal Agency

- a. Bureau of Energy Efficiency (BEE) is nodal agency for implementation of the Policy.
- b. BEE shall co-ordinate with DISCOM and State Designated Agency (SDA) to administer and monitor the Policy as envisaged under EC Act 2001.

5.13.2. State Designated Agency (SDA)

- a. State Designated Agency shall be any agency of state government which will be identified by BEE.
- b. Role of SDA is to facilitate and monitor DISCOMs in implementing the Policy.

6. Way Forward

6.1. Implementation of Policy

BEE may deliberate the Policy Paper with Ministry of Power and implement the same.

6.2. Capacity Building

Refurbishment of DT is a cost-effective measure to reduce the technical loss in the distribution network. DT Refurbishment initiative can help utilities to reduce their technical loss and power purchases cost thereby lowering its overall cost of operations.

The capacity building and other support (i.e. fiscal) is essential for the DISCOMs to implement DT Refurbishment in their respective areas. In this context, Bureau of Energy Efficiency may launch a programme for capacity building of DISCOMs. This shall help in capacity building of DISCOMs in below areas to promote energy efficiency in distribution network in their respective states.

The objective of the capacity building programme shall be to implement the DT Refurbishment action plan in the DISCOM's areas. The following activities may be initiated by BEE under the programme.

Appendix A

A.1. Improved Reliability due to DT Refurbishment

The PoC carried out in 100kVA DT of MSEDCL has resulted in below functionality which demonstrates the reliability of refurbished DT at various operating conditions (loading and temperature).

Post refurbishment, 100kVA DT was reinstated into the distribution network and performance was monitored, the results from monitoring are as below:

A. Consumption Pattern

From the data available during the monitoring period, it was observed that the refurbished DT was able to handle overloading, due to kVA enhancement from refurbishment. The details are as below:

1. Maximum Monthly Consumption

It was observed that there is a decreasing trend in consumption in the months from July to October. Also, there was an increasing trend in consumption observed from December to June. Maximum consumption was noticed in May month Detailed Loading is shown below:

Figure 11: Refurbished DT monthly loading (kWH), during the monitoring period (MSEDCL)

Table 20: Refurbished DT Maximum monthly loading (kWh), during the monitoring period (MSEDCL)

Month	May 2018	May 2019
Consumption (kWh)	2666	2789

2. kVA loading on DT

Due to the enhancement of capacity from refurbishment, 100 kVA transformer was able to handle about upto 135.85 kVA load without any failure. Detailed Loading is shown below:

Figure 12: Refurbished DT kVA loading, during monitoring period (MSEDCL)

Table 21: Refurbished DT monthly average kVA loading, during the monitoring period (MSEDCL)

2017					2018						2019											
Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
62	84	93	89	64	57	55	63	81	96	107	99	84	79	83	87	72	53	50	61	82	100	110

3. Average kW loading on DT

Due to the enhancement of capacity from refurbishment, 100 kVA transformer was able to handle a kW load as high as 116.26 without failure at 0.98 power factor at an ambient temperature 40^o C. Detailed Loading is shown below:

Table 22: Refurbished DT average monthly kW loading, during the monitoring period (MSEDCL)

2017					2018							2019										
Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
82	86	87	93	66	58	54	62	78	89	103	97	83	78	78	88	74	58	49	59	78	96	106

B. Load Factor & Total Technical loss

Over the period of monitoring, the average load factor was observed to be 69% with an average loss of 1,287 W, a significant reduction from the pre-repair baseline loss of 2,241 W. This lowered technical loss will lower the average lifetime operating temperature of the DT, which helps in extending the life of the DT and improving reliability. The DT post-repair hasn't failed during the monitoring period of 2 years, whereas it used to fail every year previously. The Loading and loss profile of DT during the monitoring period is shown below:

Also, Post repair, revenue loss due to technical losses reduced by 40% due to better operational performance from refurbishment. The Average loss (INR per day) are captured in the figure below:

Figure 15: Average daily technical loss (INR per day) in refurbished DT, during monitoring period (MSEDCL)

C. Temperature Profile

The temperature profile of the refurbished DT over the monitored period of 2 years shows that it has sustained an ambient temperature as high as 47° C. Detailed temperature profile is shown below:

Above results has sturdily demonstrated that the DT refurbishment has resulted in an increase in reliability with respect to change in operating conditions.

A.2. Impact of DT Refurbishment on Average Billing Rate (ABR)

The inputs that are considered for assessing the impact of DT Refurbishment on ABR are as below

Table 23: Assumptions for assessment of Refurbishment of DTs

Sr.No.	Particulars	Unit	Details
1	Units Saved for Each DT	kWh/year	4,779
2	No of DTs	Nos	1
3	Total Units Saved (A)	kWh/year/DT	4,779
4	ACOS (B)	INR /kWh	6.78
5	Total amount saved (C=A*B)	INR/year	32,402
6	Total Cost for Active Repair	INR	98,131
7	Total Cost for Conventional Repair	INR	11,342
8	Incremental Cost	INR	86,789
9	Initial Cost of DT	INR	165,000

The cost of the new DTs to be replaced by DISCOM after DT failure are considered as per the energy efficiency rating shown in table below,

Table 24: Cost of DTs as per the ratings

Sr.No.	Particulars	Unit	Cost per DT	
1	Type of DT		Al	Cu
2	1 star	INR	165000	240000
3	3 star	INR	210000	280000

I. Impact of Technical loss and Recurring Repair Cost on ABR

a. 100 kVA DT

The Conventional Repair is a repair of the DTs in as usual scenario, where DTs get repaired for frequent intervals (every 3 years or less), without improvement in energy efficiency and useful life.

The technical loss in DTs of 100kVA capacity assumed as 4,779 units per year (basis the PoC).

Table 25: Revenue loss due to Conventional Repair of DTs

Sr No	DerticuleDS	l Init	Results for				
Sr.NO.	Particulars	Unit	1 Year	25 Years (cumulative)			
1	Total Units loss	(kWh/year)	4,779 ²⁷	109,917			
2	ACOS	INR /kWh	6.78	6.78			
3	Revenue loss due to technical loss	INR	32,402	745,237			
4	Total Cost for R&M	INR	11,342	90,736			
5	Total (Revenue loss + R&M) to be bearded by the Discoms	INR	43,744	835,973			

Basis the above, the impact of revenue loss and cost of R&M on ABR is as below:

²⁷ Assumed to be starting from 3rd year onwards after the 1st repair.

			-			(1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Sr.No	Particulars	Unit	Results (A) 1 Year	tor 25 Years	Saleable Energ (B) 1 Year	gy (kWh) * 25 Years	Loss in INR P sales (A/B) 1 Year	'er kWh 25 Years
1	Total Units loss	kWh/ year	4,779 ²⁸	109,917	490,560	12,264,000	0.97%	0.90%
2	Avg. cost of supply	INR/ kWh	6.78	6.78	490,560	12,264,000		
3	Total Revenue loss	INR	32,402	745,237	490,560	12,264,000	0.07	0.06
4	Total Cost of R&M	INR	11,342	90,736	490,560	12,264,000	0.02	0.01
5	Total (Revenue loss + R&M) to be bear by the DISCOM	INR	43,744	835,973	490,560	12,264,000	0.09	0.07

Table 26: Per unit Revenue loss w.r.t saleable Units due to Revenue Loss and Recurring Repair of DTs

*At 70% loading

The impact of revenue loss and R&M cost on ABR with a service life of 100 kVA DT for 25 years is INR 0.06 per kWh and INR 0.01 per kWh (totaling INR 0.07 per kWh) which is avoidable with DT refurbishment by saving 4,779 kWh of energy annually and avoiding recurring R&M cost.

b. 200 kVA DT

The technical loss in DTs of 200kVA capacity assumed as 4,858 units per year (basis the PoC).

Table 27: Revenue loss due to Conventional Repair of DTs

Sr No	Particulars	Unit	Results for	
51.110.	Faiticulais	Onit	1 Year	25 Years (cumulative)
1	Total Units loss	(kWh/year)	4,858 ²⁹	111,734
2	Avg. cost of supply	INR/kWh	6.78	6.78
3	Revenue loss due to technical loss	INR	32,937	757,557
4	Total Cost for R&M	INR	19,973	159,784
5	Total (Revenue loss + R&M) to be bear by the Discoms	INR	52,910	917,341

Basis the above, the impact of revenue loss and cost of R&M on ABR is as below

Table 28: Per unit Revenue loss w.r.t saleable Units due to Revenue Loss and Recurring Repair of DTs

Sr.No	Particulars	Unit	Results for (A)		Saleable Energy (kWh) * (B)		Loss in INR Per kWh sales (A/B)	
			1 Year	25 Years	1 Year	25 Years	1 Year	25 Years
1	Total Units loss	kWh/ year	4,858 ³⁰	111,734	9,81,120	24,528,000	0.50%	0.46%
2	Avg. cost of supply	INR/ kWh	6.78	6.78	9,81,120	24,528,000		
3	Total Revenue loss	INR	32,937	757,557	9,81,120	24,528,000	0.03	0.03
4	Total Cost for R&M	INR	19,973	159,784	9,81,120	24,528,000	0.02	0.01
5	Total (Revenue loss + R&M) to be bear by the DISCOM	INR	52,910	917,341	9,81,120	24,528,000	0.05	0.04

*At 70% loading

The impact of revenue loss and R&M cost on ABR with a service life of 200 kVA DT for 25 years is INR 0.03 per kWh and INR 0.01 per kWh (totaling INR 0.04 per kWh) which is avoidable with DT refurbishment through saving of 4,858 kWh of energy annually and avoiding the recurring R&M cost.

 ²⁸ Assumed to be starting from 3rd year onwards after the 1st repair.
 ²⁹ Assumed to be starting from 3rd year onwards after the 1st repair.
 ³⁰ Assumed to be starting from 3rd year onwards after the 1st repair.

II. Impact of Avoided Capex on ABR through DT Refurbishment

a. 100 kVA DT

The refurbishment of failure DTs with an additional cost is assumed as Capex during the year and this additional capitalization during the year will have impact on ARR component and tariff. Details on inputs and calculation considered for arriving the impact of avoided capex on ABR through DT refurbishment are shown below:

Table 29: ARR Components - 100 kVA DT

S.No.	Parameter	Unit	Value
1	Capital Expenditure	INR Crore	0.0098
2	Capitalization of Expenditure	INR Crore	0.0098
3	70% of Debt	INR Crore	0.0069
4	30% of Equity	INR Crore	0.0029

Table 30: Impact on Interest on Project Loans - 100 kVA DT

S.No.	Parameter	Unit	Value
1	Debt Addition due to Refurbishment of DT	INR Crore	0.01
2	Average debt	INR Crore	0.0034
3	Rate of interest (%)- (SBI MCLR for One year)	%	7.00%
4	Interest on Project Loans	INR Crore	0.0002

Table 31: Impact on ROE - 100 kVA DT

S.No.	Parameter	Unit	Value
1	Equity addition due to Refurbishment of DT	INR Crore	0.0029
2	Average Equity	INR Crore	0.0015
3	RoE @ 16%	INR Crore	0.0002

Table 32: Impact on Depreciation - 100 kVA DT

S.No.	Parameter	Unit	Value
1	Add: Addition due to Refurbishment of DT	INR Crore	0.01
2	Rate of Depreciation	%	5.28%
3	Depreciation	INR Crore	0.001

The impact on ABR due to additional capex or avoided Capex³¹ is INR 0.02 per kWh for 100kVA DT and the details are as below

Table 33: Impact on ABR due to refurbishment - 100 kVA DT

S.No.	Parameter	Unit	Value
1	Impact on Components of ARR	INR Crore	
а	Interest on Project Loans	RS. Crore	0.0002
b	RoE @ 16%	INR Crore	0.0002
С	Depreciation	INR Crore	0.0005
d	Total	INR Crore	0.0010
2	Sales	MU	0.4906
3	Impact on ABR due to Refurbishment of DT (1d/2)	INR/kWh	0.0203

³¹ Cost of DT refurbishment is about 50% of the cost of new DT (basis the PoC)

b. 200 kVA DT

The refurbishment of failure DTs with an additional cost is assumed as Capital Expenditure (Capex) during the year and this additional capitalization during the year will have impact on ARR component and tariff.

Details on inputs and calculation considered for arriving the impact of avoided capex on ABR through DT refurbishment are shown below.

Table 34: ARR components – 200 kVA DT

S.No.	Parameter	Unit	Value
1	Capital Expenditure	INR Crore	0.0152
2	Capitalization of Expenditure	INR Crore	0.0152
3	70% of Debt	INR Crore	0.0106
4	30% of Equity	INR Crore	0.0045

Table 35: Impact on Interest on Project Loans - 200 kVA DT

S.No.	Parameter	Unit	Value
1	Debt Addition due to Refurbishment of DT	INR Crore	0.01
2	Average debt	INR Crore	0.01
3	Rate of interest (%)- (SBI MCLR for One year)	%	7.00%
4	Interest on Project Loans	INR Crore	0.0004

Table 36: Impact on RoE – 200 kVA DT

S.No.	Parameter	Unit	Value
1	Equity addition due to Refurbishment of DT	INR Crore	0.0045
2	Average Equity	INR Crore	0.0023
3	RoE @ 16%	INR Crore	0.0004

Table 37: Impact on Depreciation - 200 kVA DT

S.No.	Parameter	Unit	Value
1	Add: Addition due to Refurbishment of DT	INR Crore	0.015
2	Rate of Depreciation	%	5.28%
3	Depreciation	INR Crore	0.001

The impact on ABR due to additional capex or avoided Capex³² is RS. 0.016 per kWh for 100kVA DT and the details are as below

Table 38: Impact on ABR due to refurbishment – 200 kVA DT

S.No.	Parame	ter	Unit Value	
1		Impact on Components of ARR	INR Crore	
	а	Interest on Project Loans	INR Crore	0.0004
	b	RoE @ 16%	INR Crore	0.0004
	С	Depreciation	INR Crore	0.0008
	d	Total	INR Crore	0.0015
2		Sales	MU	0.9811
3		Impact on ABR due to Refurbishment of DT (1d/2)	INR/kWH	0.016

 $^{^{\}rm 32}$ Cost of DT refurbishment is about 50% of the cost of new DT (basis the PoC)

A.3. Assumptions for estimation of savings potential due to refurbishment

Based on secondary research and analysis, following assumptions were made:

- 1. For states with no failure rate information, failure rate has been approximated from peer states with similar DT profile.
- 2. Conservatively, for states with no available peers, national average failure rate has been used as proxy for state's failure rate.
- 3. Based on the available data on split of DT volume, by capacity, for Madhya Pradesh³³) and Karnataka³⁴ an average of capacity split has been calculated. As Madhya Pradesh is an agricultural based economy and Karnataka is an Industrial economy, the average split calculated using the data of these two states may be representative of transformer split for the remaining states & UTs

Table 39: Assumed split of Installed DTs, by capacity, based on % of MVA capacity installed

Capacity	>200 kVA	200 kVA	100 kVA	63 kVA	25 kVA	<25 kVA
% of installed MVA	34.23%	2.23%	28.93%	15.29%	18.81%	0.51%

- 4. Average size of transformers over 200 kVA, and below 25 kVA has been considered as 315 kVA and 10 kVA respectively based on Proof of Concept (PoC) studies.
- 5. Though the failed DTs can be unrated/rated as per old BEE standards/New BEE standards, conservatively it was assumed that, failed DTs are rated and are rated at least 1 star, as per BEE Standards & Labelling (S&L) program (valid up to 31st December 2016). This is because the chance of failure would increase with age and unrated DTs will have technical losses higher than BEE specifications
- Based on the results of PoC studies, the average deviation in losses from technical specifications of star 1 rated DT (as per BEE S&L program, valid up to 31st December 2016) in an inefficiently operating legacy DTs & conventionally repaired DTs, post-conventional repair, had been assumed as below:

Table 40: Deviation in technical losses from rated loss levels, in DTs post conventional repair / Legacy DTs operating inefficiently

Loss	Deviation
No-load loss	+15%
Full load loss	+30%

 Based on PoC studies, the average deviation in losses from technical specifications of star 1 rated DT (as per BEE S&L program, valid up to 31st December 2016) in refurbished legacy DTS, and refurbished failed DTs had been assumed as below:

Table 41: Deviation in technical losses from rated loss levels, in refurbished DTs

Loss	Deviation
No-load loss	+10%
Full load loss	-30%

8. From secondary research³⁵, it is assumed conservatively that

- 70% of the failed DTs are repairable
- 30% of the failed DTs are beyond repair as per conventional repair practices and they are replaced

³³ Source: PoC studies by ICA in MPPKVVCL ³⁴ Source: BESCOM

³⁵ https://www.cstep.in/drupal/sites/default/files/2019-01/CSTEP_RR_Strategic_Roadmap_for_Implementation_of_UDAY_Scheme_Dec_2017.pdf

- 9. Though it is likely that Legacy DTs form a higher percentage of installed DT capacity, because the rated life of a DT is more than 25 years, conservatively, it is assumed that:
 - 60% of operational DTs in the distribution network are new, operate as per IS 1180 (Energy Efficiency Level 1)
 - 40% of operational DTs are legacy DTs, operate at deviation levels as specified in <u>Appendix A.3</u>
- 10. Out of the 30% failed DTs that were unrepairable conventionally, it is assumed 20% can be refurbished on a conservative basis.
- 11. From PoC studies, average load on DT was considered as 70%
- 12. In order to arrive at CAPEX savings, the following prices for new DTs has been used:

Table 42: Assumed prices of new AL star 1 rated DT

Capacity (kVA)	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA
Price (RS)	3,00,000	1,80,000	1,00,000	95,000	49,680	51,500
						O a company data di a sa a st

Source: Indiamart

A.4. DT Failure Rate

Table 43: DT failure rates, by state

State	Failure Rate	DT Volume	Failed Volume	Source
Maharashtra	8.85%	6,26,248	55,423	https://powermin.gov.in/sites/default/files/uploads/Maharashtra_Final_Report_27022016.pdf
Gujarat	5.62%	14,62,702	82,241	
DGVCL	4.94%			https://powerline.net.in/2019/03/27/dgvcl/#:~:text=Further%2C%20the%20distribution%20transformer%20(DT,per%20cent%20in%202017%2D18.
PGVCL	8.55%			https://www.mgvcl.com/Upload/circulaRS/GERC%20Tariff%20Order%20dated%2031%2003%202020%20for%20MGVCL. pdf
MGVCL	3.42%			https://www.mgvcl.com/Upload/circulaRS/GERC%20Tariff%20Order%20dated%2031%2003%202020%20for%20MGVCL.pdf
UGVCL	5.58%			http://www.ugvcl.com/UGVCL%20wins%20Semi-Finalist%20SKOCH%20Order%20of%20Merit%20Award.pdf
Karnataka	10.68%	8,70,320	92,933	
BESCOM	6.96%			https://bescom.karnataka.gov.in/page/Departments+of+Corporate+Office/Operations/Transformer+Details/en
GESCOM	13.21%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
HESCOM	11.68%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
MESCOM	11.61%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
MCSCL	9.93%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
Rajasthan	9.45%	17,74,819	1,67,721	
AVVNL	9.18%			https://powerline.net.in/2019/02/05/avvnl/
JDVVNL	9.87%			https://cag.gov.in/uploads/download_audit_report/2019/Chapter_3_Compliance_Audit_Observations_relating_to_Power_S ector_Undertakings_of_Report_No_3_of_2019_Public_Sector_Undertakings_Government_of_Rajasthan.pdf
JVVNL	9.30%			https://cag.gov.in/uploads/download_audit_report/2019/Chapter_3_Compliance_Audit_Observations_relating_to_Power_S ector_Undertakings_of_Report_No_3_of_2019_Public_Sector_Undertakings_Government_of_Rajasthan.pdf
Uttar Pradesh	16.05%	9,35,944	1,50,238	
DVVNL	18.38%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
KESCO	12.13%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
MVVNL	21.60%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
PaVVNL	10.00%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
PuVVNL	18.15%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
Madhya Pradesh	10.85%	7,78,552	84,499	

State	Failure Rate	DT Volume	Failed Volume	Source
MPMaKVVCL	10.90%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
MPPaKVVCL	8.17%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
MPPoKVVCL	13.49%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
Punjab	4%	10,67,021	42,681	https://smartpowerindia.org/knowledge/#PUBLICATIONS
Andhra Pradesh	5.88%	9,50,341	55,833	
APEPDCL	6.43%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
APSPDCL	5.32%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
Telangana	10%	6,99,292	69,930	https://telanganatoday.com/transformer-failures-down-in-telangana
Haryana	5.37%	5,68,979	30,569	
DHBVNL	5.55%			https://herc.gov.in/WriteReadData/OrdeRS/O20210330a.pdf
UHBVNL	5.20%			https://herc.gov.in/WriteReadData/OrdeRS/O20210330a.pdf
West Bengal	7.04%	2,75,914	19,425	https://smartpowerindia.org/knowledge/#PUBLICATIONS
Bihar	6.23%	1,46,073	9,094	
NBPDCL	6%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
SBPDCL	6.45%			https://smartpowerindia.org/knowledge/#PUBLICATIONS
Chhattisgarh	8%	1,68,277	13,463	https://powermin.gov.in/sites/default/files/uploads/joint_initiative_of_govt_of_india_and_chhattisgarh.pdf
J&K	26.79%	52,708	14,121	https://powermin.gov.in/sites/default/files/uploads/joint_initiative_of_govt_of_india_and_jammu_and_kashmir.pdf
Assam	5.28%	84,702	4,473	https://smartpowerindia.org/knowledge/#PUBLICATIONS
Uttarakhand	12.80%	69,256	8,865	https://cag.gov.in/uploads/old_reports/state/Uttarakhand/2008/Civil/Civil_Uttarakhand_2008/chap_7.pdf
Himachal Pradesh	4.04%	31,360	1,267	https://cag.gov.in/uploads/old_reports/union/union_performance/2006_2007/Civil_%20Performance_Audits/Report_no_16/ min_power.pdf
Tripura	11.19%	14,632	1,638	https://terc.tripura.gov.in/sites/default/files/Annual_Report_2018-19.pdf
Goa	5.30%	6,302	335	https://cag.gov.in/uploads/old_reports/union/union_performance/2006_2007/Civil_%20Performance_Audits/Report_no_16/ min_power.pdf
Meghalaya	5%	10,237	512	https://smartpowerindia.org/knowledge/#PUBLICATIONS
Chandigarh	5.29%	2,200	117	https://powermin.gov.in/sites/default/files/uploads/joint_initiative_of_govt_of_india_and_Chndigarh.pdf
Total		1,05,95,879	9,05,378	

Note:

- State's DT failure rate has been approximated as the average of failure rates of respective state DISCOMs (for example, failure rate of Bihar is assumed as simple average of failure rates of its DISCOMs NBPDCL and SBPDCL)
- Failure rates of these states has been used in conjunction with the DT volume, to calculate the failed volume

Based on the failure rate available, the national average failure rate has been calculated as (9,05,378 / 1,05,95,879) = 8.54%

Basis, the national average of 8.54% and assumptions 1 & 2 (<u>Appendix A.3</u>), failure rate of the remaining states has been approximated as below:

State	Failure Rate	Remark
Tamil Nadu	12.12%	Approximated as the average of failure rates of Rajasthan, UP & MP
Orissa	7.11%	Approximated as the average of failure rates of Bihar & Chhatisgarh
Kerala	8.00%	Approximated as the average of failure rates of Chhatisgarh
Jharkhand	16.04%	Approximated as the average of failure rates of Assam & J&K
Puducherry	8.54%	Approximated as the National Average Failure Rate
Manipur	8.54%	
Aruncahal Pradesh	8.54%	
Nagaland	8.54%	
Sikkim	8.54%	
Daman & Diu	8.54%	
D&N Haveli	8.54%	
Mizoram	8.54%	
A&N Island	8.54%	
Lakshwadeep	8.54%	

Table 44: Assumed DT failure rates, by state

A.5. State wise Volume of Failed DTs, by capacity

Basis assumption 3 (Appendix A.3), failed volume of DTs has been approximated as below:

Table 45: Volume of failed DTs, state wise, by capacity

	Installed	Capacity	Transformer Split								Failed Transformers						
State	Number	kVA	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total	%	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total
Chandigarh	2200	733987	798	82	2124	1782	5522	375	10683	5.29%	43	5	113	95	293	20	569
Delhi	55907	14893839	16183	1664	43091	36149	112044	7597	216728	6.63%	1074	111	2859	2398	7432	504	14378
Haryana	568979	28287569	30736	3161	81842	68657	212803	14428	411627	5.37%	1652	170	4397	3689	11433	776	22117
Himachal Pradesh	31360	2750234	2989	308	7957	6676	20690	1403	40023	4.04%	121	13	322	270	836	57	1619
J&K	52708	6674515	7253	746	19311	16200	50212	3405	97127	26.79%	1944	200	5174	4340	13452	913	26023
Punjab	1067021	35075690	38112	3919	101481	85133	263868	17890	510403	4.00%	1525	157	4060	3406	10555	716	20419
Rajasthan	1774819	48526314	52726	5421	140397	117779	365055	24750	706128	9.45%	4983	513	13268	11131	34498	2339	66732
Uttar Pradesh	935944	42924244	46640	4796	124189	104182	322911	21893	624611	16.05%	7487	770	19935	16724	51834	3515	100265
Uttarakhand	69256	4319357	4694	483	12497	10484	32494	2203	62855	12.80%	601	62	1600	1342	4160	282	8047
Chhattisgarh	168277	10359486	11257	1158	29973	25144	77933	5284	150749	8.00%	901	93	2398	2012	6235	423	12062
Gujarat	1462702	54405089	59114	6078	157405	132047	409280	27748	791672	5.62%	3324	342	8851	7425	23012	1561	44515
Madhya Pradesh	778552	40688599	44210	4546	117721	98756	306093	20752	592078	10.85%	4799	494	12777	10719	33222	2253	64264
Maharashtra	626248	70706514	76826	7899	204568	171612	531912	36062	1028879	8.85%	6800	700	18105	15188	47075	3192	91060
Daman & Diu	924	256290	279	29	742	623	1929	131	3733	8.54%	24	3	64	54	165	12	322
D&N Haveli	1109	222850	243	25	645	541	1677	114	3245	8.54%	21	3	56	47	144	10	281
Goa	6302	1015011	1103	114	2937	2464	7636	518	14772	5.30%	59	7	156	131	405	28	786
Andhra Pradesh	950341	32561403	35380	3638	94207	79030	244954	16607	473816	5.88%	2079	214	5535	4644	14392	976	27840
Telangana	699292	31229540	33933	3489	90354	75798	234934	15928	454436	10.00%	3394	349	9036	7580	23494	1593	45446
Karnataka	870320	50070950	54405	5594	144866	121528	376675	25538	728606	10.68%	5810	598	15469	12977	40222	2727	77803
Kerala	80630	9941820	10803	1111	28764	24130	74791	5071	144670	8.00%	865	89	2302	1931	5984	406	11577
Tamil Nadu	309507	41707618	45318	4660	120669	101229	313759	21272	606907	12.12%	5492	565	14624	12268	38023	2578	73550
Puducherry	2655	617946	672	70	1788	1500	4649	316	8995	8.54%	58	6	153	129	398	28	772

Final Private and confidential

	Installed	Capacity	Transf	ormer Spli	t					Failure Rate	Failed Transformers						
State	Number	kVA	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total	%	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total
Lakshwadeep	113	17101	19	2	50	42	129	9	251	8.54%	2	1	5	4	12	1	25
Bihar	146073	12170277	13224	1360	35211	29539	91555	6208	177097	6.23%	824	85	2192	1839	5700	387	11027
Jharkhand	95638	6688789	7268	748	19352	16235	50319	3412	97334	16.04%	1166	120	3104	2604	8069	548	15611
Orissa	229780	11040920	11997	1234	31944	26798	83059	5632	160664	7.11%	854	88	2273	1907	5908	401	11431
West Bengal	275914	16248966	17656	1816	47012	39438	122238	8288	236448	7.04%	1243	128	3310	2777	8606	584	16648
Sikkim	2466	297207	323	34	860	722	2236	152	4327	8.54%	28	3	74	62	192	13	372
A&N Island	1067	179306	195	21	519	436	1349	92	2612	8.54%	17	2	45	38	116	8	226
Aruncahal Pradesh	8892	448648	488	51	1299	1089	3376	229	6532	8.54%	42	5	111	94	289	20	561
Assam	84702	5929169	6443	663	17155	14391	44605	3024	86281	5.28%	341	36	906	760	2356	160	4559
Manipur	6352	578543	629	65	1674	1405	4353	296	8422	8.54%	54	6	144	121	372	26	723
Meghalaya	10237	856984	932	96	2480	2080	6447	438	12473	5.00%	47	5	124	104	323	22	625
Mizoram	1942	216500	236	25	627	526	1629	111	3154	8.54%	21	3	54	45	140	10	273
Nagaland	3626	327391	356	37	948	795	2463	167	4766	8.54%	31	4	82	68	211	15	411
Tripura	14632	1100302	1196	123	3184	2671	8278	562	16014	11.19%	134	14	357	299	927	63	1794
	1	1	1	1	1	1	1		1	Total	58300	6013	155202	130201	403513	27374	7,80,603

A.6. Annual Energy and Cost Savings through Refurbishment of failed DT's

Technical loss in DTs has been calculated as sum of NLL and load loss i.e., (NLL+ (% Loading)^{A2} x FLL). Difference in technical losses, if failed DTs are repaired: 1) Conventionally, 2) Refurbished is annual savings because of refurbishment. Basis assumptions (Appendix A.3) and failure rate data (Appendix A.4, Appendix A.5), DT technical loss in case of conventional repair and in case of refurbishment has been calculated and the difference of technical losses in both the cases, is the savings from refurbishment.

	No of	Repa	irable [OTs, by	Capaci	ty (in	Technical losses in case of conventional repair (MU), by					MU), by	Technical losses in case of refurbishment (MU), by							Annual Saving	
State			n	os)					сара	acity					cap	acity			- unidal oating		
	>20 0	20 0	100	63	25	<2 5	>200	200	100	63	25	<25	>200	200	100	63	25	<25	MU	INR (Crore)	
Chandigarh	31	4	80	67	206	14	0.77	0.08	1.00	0.58	1.02	0.02	0.48	0.05	0.62	0.37	0.66	0.01	1.27	0.47	
Delhi	752	78	2002	1679	5203	353	18.58	1.58	24.91	14.63	25.71	0.51	11.68	0.98	15.60	9.16	16.59	0.36	31.55	23.41	
Haryana	115 7	11 9	3078	2583	8004	544	28.59	2.41	38.29	22.50	39.56	0.79	17.97	1.50	23.99	14.09	25.51	0.56	48.52	27.27	
Himachal Pradesh	85	10	226	189	586	40	2.10	0.20	2.81	1.65	2.90	0.06	1.32	0.13	1.76	1.03	1.87	0.04	3.57	1.80	
J&K	136 1	14 0	3622	3038	9417	640	33.63	2.83	45.06	26.47	46.54	0.93	21.13	1.77	28.23	16.58	30.02	0.66	57.08	23.86	
Punjab	106 8	11 0	2842	2385	7389	502	26.39	2.23	35.36	20.78	36.52	0.73	16.58	1.39	22.15	13.01	23.55	0.51	44.80	27.19	
Rajasthan	348 9	36 0	9288	7792	2414 9	163 8	86.21	7.29	115.55	67.89	119.35	2.38	54.18	4.54	72.39	42.52	76.98	1.68	146.3 8	99.69	
Uttar Pradesh	524 1	53 9	1395 5	1170 7	3628 4	246 1	129.50	10.91	173.60	101.99	179.32	3.58	81.38	6.80	108.76	63.88	115.66	2.52	219.9 1	140.30	
Uttarakhand	421	44	1120	940	2912	198	10.40	0.89	13.93	8.19	14.39	0.29	6.54	0.55	8.73	5.13	9.28	0.20	17.66	8.72	
Chhattisgarh	631	66	1679	1409	4365	297	15.59	1.34	20.89	12.28	21.57	0.43	9.80	0.83	13.09	7.69	13.91	0.30	26.47	13.18	
Gujarat	232 7	24 0	6196	5198	1610 9	109 3	57.50	4.86	77.08	45.29	79.61	1.59	36.13	3.03	48.29	28.36	51.35	1.12	97.64	53.02	
Madhya Pradesh	336 0	34 6	8944	7504	2325 6	157 8	83.02	7.00	111.27	65.38	114.93	2.30	52.17	4.36	69.71	40.94	74.13	1.62	140.9 6	81.33	
Maharashtra	476 0	49 0	1267 4	1063 2	3295 3	223 5	117.61	9.92	157.67	92.63	162.86	3.25	73.91	6.18	98.78	58.01	105.04	2.29	199.7 3	136.41	
Daman & Diu	17	3	45	38	116	9	0.42	0.06	0.56	0.33	0.57	0.01	0.26	0.04	0.35	0.21	0.37	0.01	0.72	0.29	
D&N Haveli	15	3	40	33	101	7	0.37	0.06	0.50	0.29	0.50	0.01	0.23	0.04	0.31	0.18	0.32	0.01	0.63	0.32	
Goa	42	5	110	92	284	20	1.04	0.10	1.37	0.80	1.40	0.03	0.65	0.06	0.86	0.50	0.91	0.02	1.74	0.83	
Andhra Pradesh	145 6	15 0	3875	3251	1007 5	684	35.98	3.04	48.21	28.32	49.79	1.00	22.61	1.89	30.20	17.74	32.11	0.70	61.07	36.77	
Telangana	237 6	24 5	6326	5306	1644 6	111 6	58.71	4.96	78.70	46.23	81.28	1.62	36.89	3.09	49.30	28.95	52.42	1.14	99.69	63.90	

Table 46: Annual Energy & Cost Savings, by state, through refurbishment of failed DTs

State	No of	f Repa	irable [n	OTs, by os)	Capaci	ty (in	(in Technical losses in case of conventional repair (MU), by Technical losses in case of refurbishment (MU), by Annual Sa capacity								Technical losses in case of conventional repair (MU), by Capacity Capacity Capacity Capacity							
State	>20 0	20 0	100	63	25	<2 5	>200	200	100	63	25	<25	>200	200	100	63	25	<25	MU	INR (Crore)		
Karnataka	406 7	41 9	1082 9	9084	2815 6	190 9	100.49	8.48	134.72	79.14	139.15	2.78	63.15	5.28	84.40	49.57	89.75	1.96	170.6 5	112.46		
Kerala	606	63	1612	1352	4189	285	14.97	1.28	20.05	11.78	20.70	0.41	9.41	0.79	12.56	7.38	13.35	0.29	25.41	14.31		
Tamil Nadu	384 5	39 6	1023 7	8588	2661 7	180 5	95.00	8.02	127.35	74.82	131.54	2.63	59.70	4.99	79.78	46.86	84.84	1.85	161.3 3	109.06		
Puducherry	41	5	108	91	279	20	1.01	0.10	1.34	0.79	1.38	0.03	0.64	0.06	0.84	0.50	0.89	0.02	1.71	0.99		
Lakshwadeep	2	1	4	3	9	1	0.05	0.02	0.05	0.03	0.04	0.00	0.03	0.01	0.03	0.02	0.03	0.00	0.07	0.16		
Bihar	577	60	1535	1288	3990	271	14.26	1.21	19.10	11.22	19.72	0.39	8.96	0.76	11.96	7.03	12.72	0.28	24.20	15.15		
DVC	44	5	116	97	299	21	1.09	0.10	1.44	0.85	1.48	0.03	0.68	0.06	0.90	0.53	0.95	0.02	1.83	0.00		
Jharkhand	817	84	2173	1823	5649	384	20.19	1.70	27.03	15.88	27.92	0.56	12.69	1.06	16.94	9.95	18.01	0.39	34.25	21.68		
Orissa	598	62	1592	1335	4136	281	14.78	1.25	19.80	11.63	20.44	0.41	9.29	0.78	12.41	7.28	13.18	0.29	25.08	11.99		
West Bengal	871	90	2317	1944	6025	409	21.52	1.82	28.82	16.94	29.78	0.60	13.52	1.14	18.06	10.61	19.21	0.42	36.53	21.26		
Sikkim	20	3	52	44	135	10	0.49	0.06	0.65	0.38	0.67	0.01	0.31	0.04	0.41	0.24	0.43	0.01	0.83	0.35		
A&N Island	12	2	32	27	82	6	0.30	0.04	0.40	0.24	0.41	0.01	0.19	0.03	0.25	0.15	0.26	0.01	0.51	1.25		
Aruncahal Pradesh	30	4	78	66	203	14	0.74	0.08	0.97	0.58	1.00	0.02	0.47	0.05	0.61	0.36	0.65	0.01	1.25	1.00		
Assam	239	26	635	532	1650	112	5.91	0.53	7.90	4.63	8.15	0.16	3.71	0.33	4.95	2.90	5.26	0.11	10.02	5.88		
Manipur	38	5	101	85	261	19	0.94	0.10	1.26	0.74	1.29	0.03	0.59	0.06	0.79	0.46	0.83	0.02	1.60	1.04		
Meghalaya	33	4	87	73	227	16	0.82	0.08	1.08	0.64	1.12	0.02	0.51	0.05	0.68	0.40	0.72	0.02	1.38	0.79		
Mizoram	15	3	38	32	98	7	0.37	0.06	0.47	0.28	0.48	0.01	0.23	0.04	0.30	0.17	0.31	0.01	0.62	0.38		
Nagaland	22	3	58	48	148	11	0.54	0.06	0.72	0.42	0.73	0.02	0.34	0.04	0.45	0.26	0.47	0.01	0.92	0.69		
Tripura	94	10	250	210	649	45	2.32	0.20	3.11	1.83	3.21	0.07	1.46	0.13	1.95	1.15	2.07	0.05	3.94	1.92		
								1		Summa	ary		1									
Total repairable DTs 5,												5,46,	532									
Technical loss	if DTs	are re	epaireo	d conv	ention	ally (N	IU)												4,664			
Technical loss	if DTs	are re	efurbis	shed (N	1U)														2,952			
Annual Saving	s due f	o refu	urbishi	ment (l	MU)														1,712			

A.7. Annual Capex avoidance due to DT Refurbishment

Refurbishment can help contain the technical loss in DTs post-repair and so can help in restoring a few DTs that were not repairable through conventional repair because of excessive technical loss. For analysis purposes, it was assumed that 20% of earlier unrepairable DTs can be refurbished and basis the price assumptions (Appendix A.3), the following results were obtained by using the below formula:

(Number of Failed DTs x 30%) = DTs not repairable conventionally (A)

A x 20% = Non repairable DTs conventionally that can be refurbished (B)

B x Price of new DT = CapEx savings (C)

Table 47: CAPEX avoidance due to DT refurbishment, by state (in INR)

01-1-			(C. CAPEX	Savings (C	rore INR)	
State	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total
Chandigarh	0.09	0.00	0.07	0.06	0.09	0.01	0.31
Delhi	1.92	0.13	1.72	1.37	2.22	0.15	7.50
Haryana	2.97	0.18	2.64	2.10	3.41	0.24	11.54
Himachal Pradesh	0.21	0.02	0.19	0.15	0.25	0.02	0.83
J&K	3.51	0.22	3.10	2.47	4.01	0.28	13.59
Punjab	2.76	0.16	2.44	1.94	3.14	0.22	10.67
Rajasthan	8.97	0.56	7.96	6.35	10.28	0.72	34.84
Uttar Pradesh	13.47	0.83	11.96	9.53	15.45	1.09	52.32
Uttarakhand	1.08	0.07	0.96	0.77	1.24	0.09	4.21
Chhattisgarh	1.62	0.11	1.44	1.15	1.86	0.13	6.30
Gujarat	5.97	0.38	5.31	4.24	6.86	0.48	23.24
Madhya Pradesh	8.64	0.54	7.67	6.11	9.90	0.70	33.55
Maharashtra	12.24	0.76	10.86	8.65	14.03	0.99	47.53
Daman & Diu	0.03	0.00	0.04	0.03	0.05	0.01	0.15
D&N Haveli	0.03	0.00	0.03	0.03	0.04	0.01	0.14
Goa	0.12	0.00	0.09	0.08	0.12	0.01	0.42
Central Sector (WR)	0.12	0.00	0.11	0.09	0.14	0.01	0.47
Andhra Pradesh	3.75	0.23	3.32	2.65	4.29	0.30	14.55
Telangana	6.12	0.38	5.42	4.32	7.00	0.49	23.74
Karnataka	10.47	0.65	9.28	7.40	11.99	0.84	40.63
Kerala	1.56	0.09	1.38	1.10	1.78	0.12	6.04
Tamil Nadu	9.90	0.61	8.77	6.99	11.33	0.80	38.40
Puducherry	0.09	0.00	0.09	0.08	0.12	0.01	0.39
Lakshwadeep	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Central Sector (SR)	0.12	0.00	0.11	0.09	0.14	0.01	0.46
Bihar	1.47	0.09	1.32	1.05	1.70	0.12	5.74
DVC	0.12	0.00	0.10	0.08	0.13	0.01	0.44
Jharkhand	2.10	0.13	1.86	1.48	2.40	0.17	8.14
Orissa	1.53	0.09	1.36	1.08	1.76	0.12	5.95
West Bengal	2.25	0.14	1.99	1.59	2.56	0.18	8.71
Sikkim	0.06	0.00	0.04	0.04	0.06	0.01	0.20
A&N Island	0.03	0.00	0.03	0.02	0.03	0.00	0.11
Central Sector (ER)	0.24	0.02	0.22	0.18	0.28	0.02	0.96
Aruncahal Pradesh	0.09	0.00	0.07	0.06	0.08	0.01	0.31
Assam	0.60	0.04	0.54	0.44	0.70	0.05	2.36
Manipur	0.09	0.00	0.09	0.07	0.11	0.01	0.37
Meghalaya	0.09	0.00	0.07	0.06	0.09	0.01	0.32
Mizoram	0.03	0.00	0.03	0.03	0.04	0.01	0.13
Nagaland	0.06	0.00	0.05	0.04	0.06	0.01	0.22
Tripura	0.24	0.02	0.21	0.17	0.28	0.02	0.94
Total	104.94	6.44	93.10	74.22	120.28	8.48	407.46

A.8. Annual savings with refurbishment of inefficiently operating legacy DTs

New BEE S&L standards came into force post-December 31, 2016, and so it is likely that DTs commissioned into the distribution network prior to this date are operating at technical loss levels which are higher than new BEE S&L standards. To capture this, it is assumed that all the new DTs operate at loss levels as per EEL 1 rated DT as per IS 1180 Part 1. Also, as observed in PoC studies, Legacy DTs are assumed to operate at deviations as specified in Appendix A.3 (assumption 6), and post refurbishment, legacy DTs will operate at deviation levels as specified in Appendix A.3 (assumption 7).

Though it is likely that Legacy DTs form a higher percentage of installed DT capacity because the rated life of a DT is 25 years, conservatively it is assumed that of the operational DTs, 60% are new DTs and 40% are legacy DTs. With these premises, analysis has been carried out at an average DT loading of 70% and the results are as below:

Table 48: Annual Savings through refurbishment of inefficiently operating Legacy DTs, by state

State	A. Current	Annual to	tal technic	al loss (N	1U)			B. Annual total technical loss post repair of legacy DTs(MU)							
Sidle	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total	
Chandigarh	15.4	1.3	20.9	12.4	21.5	0.4	72.0	12.5	1.0	17.0	10.1	17.6	0.4	58.6	
Delhi	312.7	26.3	425.0	251.1	436.6	8.8	1460.4	253.3	21.2	344.9	204.0	357.9	7.4	1188.8	
Haryana	593.9	50.0	807.1	476.9	829.2	16.6	2773.7	481.0	40.4	655.0	387.4	679.8	14.1	2257.8	
Himachal Pradesh	57.8	4.9	78.5	46.4	80.6	1.6	269.7	46.8	3.9	63.7	37.7	66.1	1.4	219.5	
J&K	140.1	11.8	190.4	112.5	195.6	3.9	654.5	113.5	9.5	154.6	91.4	160.4	3.3	532.8	
Punjab	736.4	62.0	1000.8	591.3	1028.1	20.6	3439.3	596.5	50.0	812.2	480.4	842.9	17.5	2799.6	
Rajasthan	1018.8	85.8	1384.6	818.0	1422.4	28.5	4758.1	825.2	69.2	1123.7	664.6	1166.2	24.3	3873.1	
Uttar Pradesh	901.2	75.9	1224.8	723.6	1258.2	25.2	4208.8	730.0	61.2	993.9	587.9	1031.5	21.5	3426.0	
Uttarakhand	90.7	7.6	123.2	72.8	126.6	2.5	423.6	73.5	6.2	100.0	59.2	103.8	2.2	344.8	
Central Sector (NR)	21.2	1.8	28.8	17.0	29.6	0.6	99.1	17.2	1.4	23.4	13.8	24.3	0.5	80.7	
Chhattisgarh	217.5	18.3	295.6	174.6	303.7	6.1	1015.8	176.2	14.8	239.9	141.9	249.0	5.2	826.9	
Gujarat	1142.3	96.1	1552.3	917.1	1594.7	32.0	5334.5	925.2	77.6	1259.8	745.2	1307.5	27.2	4342.4	
Madhya Pradesh	854.3	71.9	1161.0	685.9	1192.6	23.9	3989.6	691.9	58.0	942.2	557.3	977.8	20.3	3247.6	
Maharashtra	1484.5	125.0	2017.5	1191.9	2072.5	41.5	6932.9	1202.4	100.8	1637.2	968.4	1699.2	35.3	5643.4	
Daman & Diu	5.4	0.5	7.3	4.3	7.5	0.2	25.2	4.4	0.4	5.9	3.5	6.2	0.1	20.5	
D&N Haveli	4.7	0.4	6.4	3.8	6.5	0.1	21.9	3.8	0.3	5.2	3.1	5.4	0.1	17.8	
Goa	21.3	1.8	29.0	17.1	29.8	0.6	99.5	17.3	1.5	23.5	13.9	24.4	0.5	81.0	
Central Sector (WR)	15.8	1.3	21.5	12.7	22.1	0.4	73.9	12.8	1.1	17.5	10.3	18.1	0.4	60.2	
Andhra Pradesh	683.7	57.5	929.1	548.9	954.4	19.1	3192.7	553.7	46.4	754.0	446.0	782.5	16.3	2598.9	
Telangana	655.7	55.2	891.1	526.5	915.4	18.3	3062.1	531.1	44.5	723.1	427.7	750.5	15.6	2492.6	
Karnataka	1051.3	88.5	1428.7	844.1	1467.7	29.4	4909.6	851.5	71.4	1159.4	685.8	1203.3	25.0	3996.4	
Kerala	208.7	17.6	283.7	167.6	291.4	5.8	974.8	169.1	14.2	230.2	136.2	238.9	5.0	793.5	
Tamil Nadu	875.7	73.7	1190.0	703.1	1222.5	24.5	4089.5	709.3	59.5	965.8	571.2	1002.3	20.8	3328.9	
Puducherry	13.0	1.1	17.6	10.4	18.1	0.4	60.6	10.5	0.9	14.3	8.5	14.9	0.3	49.3	
Lakshwadeep	0.4	0.0	0.5	0.3	0.5	0.0	1.7	0.3	0.0	0.4	0.2	0.4	0.0	1.4	

State	A. Current Annual total technical loss (MU)							B. Annual total technical loss post repair of legacy DTs(MU)						
	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total	>200 kVA	200kVA	100kVA	63kVA	25kVA	<25kVA	Total
Central Sector (SR)	15.3	1.3	20.8	12.3	21.4	0.4	71.5	12.4	1.0	16.9	10.0	17.5	0.4	58.2
Bihar	255.5	21.5	347.3	205.2	356.7	7.2	1193.3	207.0	17.4	281.8	166.7	292.5	6.1	971.4
DVC	14.0	1.2	19.0	11.2	19.5	0.4	65.1	11.3	1.0	15.4	9.1	16.0	0.3	53.0
Jharkhand	140.4	11.8	190.9	112.8	196.1	3.9	655.9	113.8	9.5	154.9	91.6	160.7	3.3	533.9
Orissa	231.8	19.5	315.0	186.1	323.6	6.5	1082.6	187.8	15.8	255.7	151.2	265.3	5.5	881.3
West Bengal	341.2	28.7	463.6	273.9	476.3	9.5	1593.3	276.3	23.2	376.3	222.6	390.5	8.1	1296.9
Sikkim	6.2	0.5	8.5	5.0	8.7	0.2	29.2	5.1	0.4	6.9	4.1	7.1	0.1	23.7
A&N Island	3.8	0.3	5.1	3.0	5.3	0.1	17.6	3.1	0.3	4.2	2.5	4.3	0.1	14.3
Central Sector (ER)	31.2	2.6	42.5	25.1	43.6	0.9	145.9	25.3	2.1	34.5	20.4	35.8	0.7	118.8
Aruncahal Pradesh	9.4	0.8	12.8	7.6	13.2	0.3	44.0	7.6	0.7	10.4	6.1	10.8	0.2	35.8
Assam	124.5	10.5	169.2	100.0	173.8	3.5	581.4	100.8	8.5	137.3	81.2	142.5	3.0	473.3
Manipur	12.2	1.0	16.5	9.8	17.0	0.3	56.8	9.8	0.8	13.4	7.9	13.9	0.3	46.2
Meghalaya	18.0	1.5	24.5	14.4	25.1	0.5	84.1	14.6	1.2	19.8	11.7	20.6	0.4	68.4
Mizoram	4.6	0.4	6.2	3.7	6.3	0.1	21.3	3.7	0.3	5.0	3.0	5.2	0.1	17.3
Nagaland	6.9	0.6	9.3	5.5	9.6	0.2	32.1	5.6	0.5	7.6	4.5	7.9	0.2	26.1
Tripura	23.1	1.9	31.4	18.6	32.3	0.6	107.9	18.7	1.6	25.5	15.1	26.4	0.6	87.8
Central Sector (NER)	1.3	0.1	1.8	1.0	1.8	0.0	6.0	1.0	0.1	1.4	0.8	1.5	0.0	4.9
Total	12362	1041	16800	9925	17258	346	57732	10013	840	13634	8064	14149	294	46994
Summary														
Capacity (kVA)								>200	200	100	63	25	<25	Total
C. Savings in Technical Loss (MU) (A-B)								2,349	201	3,166	1,861	3,108	51.7	10,738

Adding Value...